引言
在现代信息检索中,速度与准确性至关重要。Marqo作为一种先进的张量搜索引擎,利用内存中的HNSW索引和最新的机器学习模型,实现了高效的搜索性能。本文将介绍如何在LangChain生态系统中使用Marqo,帮助开发者快速构建和扩展搜索解决方案。
主要内容
什么是Marqo?
Marqo是一种高性能的张量搜索引擎,支持异步和非阻塞的数据上传和搜索。它可以扩展至数亿文档,通过水平索引分片确保性能。Marqo支持从PyTorch、Huggingface、OpenAI等提供的最新模型,用户可以使用内置模型或导入自定义模型。此外,ONNX支持和转换可以加速推理,提高CPU和GPU的吞吐量。
安装和设置
要在项目中使用Marqo的Python SDK,可以通过以下命令安装:
pip install marqo
Marqo提供灵活的部署选项,包括本地Docker镜像和托管云服务。
如何在LangChain中使用Marqo
LangChain提供了一种对Marqo索引的包装器,使其能够在vectorstore框架中使用。Marqo允许用户选择多种模型来生成嵌入,并提供预处理配置。对于包含文本和图像的多模态索引,Marqo的vectorstore也能够很好地处理。
API参考
在LangChain中导入Marqo的vectorstore包装器