[使用LangChain加载和微调Facebook Messenger聊天记录的完整指南]

使用LangChain加载和微调Facebook Messenger聊天记录的完整指南

引言

在现代的AI开发中,定制化聊天模型正在受到越来越多的关注。通过微调现有的大型语言模型,例如OpenAI的GPT-3,你可以创建一个更贴合特定需求的聊天机器人。本文将引导你如何从Facebook Messenger导出聊天记录,并使用LangChain工具进行数据处理,以便于后续的模型微调。

主要内容

1. 下载数据

要开始,你需要从Facebook中下载你的聊天记录。请确保下载的是JSON格式的数据,而不是HTML格式。这是因为JSON格式更适合程序化处理。

以下是一个从Google Drive下载并解压缩文件的Python脚本示例:

import zipfile
import requests

def download_and_unzip(url: str, output_path: str = "file.zip") -> None:
    file_id = url.split("/")[-2]
    download_url = f"https://drive.google.com/uc?export=download&id={
     file_id}"

    response = requests.get(download_url)
    if response.status_code != 200:
        print
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值