我们来分析一下快速排序法的性能。
快速排序的时间性能取决于快速排序递归的深度,
可以用递归树来描述递归算法的执行情况。
如图9‐9‐7所示,它是{50,10,90,30, 70,40,80,60,20}在快速排序过程中的递归过程。由于我们的第一个关键字是50,正好是待排序的序列的中间值,因此递归树是平衡的,此时性能也比较好。
在最优情况
Partition每次都划分得很均匀,如果排序n个关键字,其递归树的深度就为
log
2
(
2
n
+
1
)
,
节
点
个
数
为
n
\log_2(2n+1),节点个数为n
log2(2n+1),节点个数为n
例如2个节点,深度为2.
第一次Partiation应该是需要对整个数组扫描一遍,做n次比较。
获得的枢轴将数组一分为二,那么各自还需要T(n/2)的时间(注意是最好情况,所以平分两半)
分
成
2
块
:
T
(
n
)
≤
2
T
(
n
/
2
)
+
n
,
T
(
1
)
=
0
,
其
中
n
=
(
log
2
2
)
×
n
分成2块:T(n)≤2T(n/2) +n,T(1)=0,其中n=(\log_22)\times n
分成2块:T(n)≤2T(n/2)+n,T(1)=0,其中n=(log22)×n
不断地划分下去,我们就有了下面的不等式推断
分
成
4
块
:
T
(
n
)
≤
2
(
2
T
(
n
/
4
)
+
n
/
2
)
+
n
=
4
T
(
n
/
4
)
+
2
n
,
其
中
2
n
=
(
log
2
4
)
×
n
分成4块:T(n)≤2(2T(n/4)+n/2) +n=4T(n/4)+2n,其中2n=(\log_24)\times n
分成4块:T(n)≤2(2T(n/4)+n/2)+n=4T(n/4)+2n,其中2n=(log24)×n
分 成 8 块 : T ( n ) ≤ 4 ( 2 T ( n / 8 ) + n / 4 ) + 2 n = 8 T ( n / 8 ) + 3 n … … 分成8块:T(n)≤4(2T(n/8)+n/4) +2n=8T(n/8)+3n …… 分成8块:T(n)≤4(2T(n/8)+n/4)+2n=8T(n/8)+3n……
分 成 n 块 : T ( n ) ≤ n T ( 1 ) + ( log 2 n ) × n = O ( n log 2 n ) 分成n块:T(n)≤nT(1)+(\log_2n)×n= O(n\log_2n) 分成n块:T(n)≤nT(1)+(log2n)×n=O(nlog2n)
也就是说,在最优的情况下,快速排序算法的时间复杂度为O(nlogn)。
最坏的情况,
待排序的序列为正序或者逆序,每次划分只得到一个比上一次划分少一个记录的子序列,注意另一个为空。如果递归树画出来,它就是一棵斜树。
此时需要执行n‐1次递归调用,且第i次划分需要经过n‐i次关键字的比较才能找到第i个记录,也就是枢轴的位置,因此比较次数为
最终其时间复杂度为O(n^2)。
平均的情况
设枢轴的关键字应该在第k的位置(1≤k≤n),那么:
T
(
n
)
=
1
n
∑
k
=
1
n
(
T
(
k
−
1
)
+
T
(
n
−
k
)
)
+
n
=
2
n
∑
k
=
1
n
T
(
k
)
+
n
T(n)=\frac{1}{n}\sum_{k=1}^{n}({T(k-1)+T(n-k))+n}=\frac{2}{n}\sum_{k=1}^{n}{T(k)+n}
T(n)=n1k=1∑n(T(k−1)+T(n−k))+n=n2k=1∑nT(k)+n
空间复杂度,
主要是递归造成的栈空间的使用,最好情况,递归树的深度为
l
o
g
2
n
log_2n
log2n
其空间复杂度也就为 O(logn),
最坏情况,
需要进行n‐1递归调用,其空间复杂度为O(n),
平均情况,
空间复杂度也为O(logn)。
可惜的是,由于关键字的比较和交换是跳跃进行的,因此,
快速排序是一种不稳定的排序方法。
参考自:快速排序最好,最坏,平均复杂度分析
补充:
文本与公式书写使用typora,但是typora不支持公式左对齐,所以写出来比较难看。
另外,csdn的markdown 界面不够好看。