CCPC2020绵阳-Lottery(思维)

本文详细解析了一道涉及高精度计算的编程题目,重点在于处理不同幂次差值下的进位问题。作者通过排序和动态规划的方法,巧妙地解决了相邻项之间的关系,避免了调试过程中因忽视取模导致的错误。文章深入探讨了如何在计算过程中考虑取模运算,以及如何在递归过程中更新答案,对于理解和解决类似问题具有指导意义。
摘要由CSDN通过智能技术生成

在这里插入图片描述在这里插入图片描述

  • 一定要注意取模啊!这道题当时不取模调试了2hour炸了啊!

思路

  • 思维题:先将所有 a i a_i ai排序,考察相邻的幂次差距。将第一个 a i a_i ai往后转移一个,考虑子问题即可。两种情况:
  • 小于等于余数的个数乘以后面子问题的所有方案
  • 大于余数的只能乘后面子问题的所有方案减去1
#include <bits/stdc++.h>
using namespace std;

#include<iostream>
#include<vector>
#include<string>
#include<set>
#include<algorithm>
#include<map>
#include<queue>
#include <chrono>
#include<math.h>
#include<unordered_map>
using namespace std;
const int N = 1e5+5;
const int S =  500;
const long long mod = 1e9+7;
typedef long long ll;

void solve(pair<ll,ll> a[],int n,int i)
{   
    ll temp[n][2];
    for(int i = 0;i<n;i++) temp[i][0]=temp[i][1]=a[i].second;
    for(int i = 1;i<n;i++)  //根据i-1填i的情况
    {
        if(a[i].first - a[i-1].first >= 60)  //无法产生进位
        {
            continue;
        }
        else
        {
            //cout << ((ll)1 << (a[i].first - a[i-1].first)) <<endl;
            ll d_1 = temp[i-1][0]/((ll)1 << (a[i].first - a[i-1].first));
            ll d_2 = temp[i-1][1]/((ll)1 << (a[i].first - a[i-1].first));
            if(d_1 > d_2)
            {
                temp[i][0]+=d_1; temp[i][1]+=d_2;
            }
            else  //d_1==d_2
            {
                if(d_1 == 0) continue;
                temp[i][0]+=d_1;
                temp[i][1]+=(d_1-1);
            }            
        }
        // cout << temp[i][0] << endl;
        // cout << temp[i][1] << endl;
    }
    ll ans[n][2];
    ans[n-1][0]=temp[n-1][0]+1;
    ans[n-1][1]=temp[n-1][1]+1;
        //     cout << ans[n-1][0] << endl;
        // cout << ans[n-1][1] << endl;
    for(int i = n-2;i>=0;i--)
    {
        if(a[i+1].first - a[i].first >= 60)  //未产生进位
        {
            ans[i][0]=((temp[i][0]+1)%mod * (ans[i+1][0])%mod)%mod;
            ans[i][1]=((temp[i][1]+1)%mod * (ans[i+1][1])%mod)%mod;
        }
        else
        {
            ll d_1 = temp[i][0]/((ll)1 << (a[i+1].first - a[i].first));
            ll d_2 = temp[i][1]/((ll)1 << (a[i+1].first - a[i].first));
            ll r_1 = temp[i][0]%((ll)1 << (a[i+1].first - a[i].first));
            ll r_2 = temp[i][1]%((ll)1 << (a[i+1].first - a[i].first));
            if(d_1>d_2)
            {
                ans[i][0]=((ans[i+1][0])%mod + ((r_2)%mod * (ans[i+1][1])%mod)%mod)%mod;
                ans[i][1]=((r_2+1)%mod * (ans[i+1][1])%mod)%mod;
            }
            else   //d_1 == d_2
            {
                ll div = (ll)1 << (a[i+1].first - a[i].first);
                ans[i][0] = (((r_1+1)%mod * (ans[i+1][0] % mod)) % mod);
                ans[i][1] = (((r_2+1)%mod * (ans[i+1][0] % mod)) % mod);
                if(d_1 != 0)
                {
                    ans[i][0]+=((div-r_1-1)%mod * (ans[i+1][1]%mod))%mod;
                    ans[i][1]+=((div-r_2-1)%mod * (ans[i+1][1]%mod))%mod;
                }
            }
        }
        //cout << ans[i][0] << endl;
        //cout << ans[i][1] << endl;
    }
    printf("Case #%d: %lld\n",i,ans[0][0]%mod);
    //cout << "Case #"<<i<<": "<<ans[0][0];
}



int main()
{
    int T;
    cin >> T;
    for(int i = 0;i<T;i++)
    {
        int n;
        cin >> n;
        pair<ll,ll> x[n];
        for(int j = 0;j<n;j++)
        {
            cin >> x[j].first; cin >> x[j].second;
        }
        sort(x,x+n);
        solve(x,n,i+1);
    }
    //system("pause");
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值