机器学习笔记(通俗易懂)---决策树的集成算法介绍(7)---附完整代码

本文介绍了两种基于决策树的集成算法:随机森林和梯度提升决策树。随机森林通过构建多棵决策树并取平均值来减少过拟合,每棵树在构建时引入了数据和特征的随机性。而梯度提升决策树则逐步添加决策树以纠正前一棵树的错误。两者各有优缺点,随机森林通常更稳定,而梯度提升在适当调参后可能有更高精度。
摘要由CSDN通过智能技术生成

机器学习笔记—决策树的集成算法介绍(7)—附完整代码

以下都是本人在学习机器学习过程中的一些心得和笔记,仅供参考。



集成ensemble)是合并多个机器学习模型来构建更强大模型的方法。

在机器学习文献中有许多模型都属于这一类,但已证明有两种集成模型对大量分类和回归的数据集都是有效的,二者都以决策树为基础,分别是随机森林random forest)和梯度提升决策树gradient boosted decision tree)。


1.随机森林

在上一篇文章写过,决策树的一个主要缺点在于经常对训练数据过拟合

  • 随机森林是解决这个问题的一种方法。
  • 随机森林本质上是许多决策树的集合,其中每棵树都和其他树略有不同
  • 随机森林背后的思想是,每棵树的预测可能都相对较好,但可能对部分数据过拟合
  • 如果构造很多树,并且每棵树的预测都很好,但都以不同的方式过拟合,那么我们可以对这些树的结果取平均值来降低过拟合
  • 既能减少过拟合又能保持树的预测能力,这可以在数学上严格证明。

为了实现这一策略,我们需要构造许多决策树。每棵树都应该对目标值做出可以接受的预测,还应该与其他树不同。随机森林的名字来自于将随机性添加到树的构造过程中,以确保每棵树都各不相同。随机森林中树的随机化方法有两种

  • 一种是通过选择用于构造树的数据点
  • 一种是通过选择每次划分测试的特征

1.1构造随机森林

想要构造一个随机森林模型,你需要确定用于构造的树的个数RandomForestRegressorRandomForestClassifiern_estimators参数)。

比如我们想要构造 10 棵树。这些树在构造时彼此完全独立,算法对每棵树进行不同的随机选择以确保树和树之间是有区别的。想要构造一棵树,首先要对数据进行自助采样(·bootstrap sample)

也就是说,从 n_samples个数据点中有放回地(即同一样本可以被多次抽取)重复随机抽取一个样本,共抽取n_samples次。

这样会创建一个与原数据集大小相同的数据集,但有些数据点会缺失(大约三分之一),有些会重复


举例说明,比如我们想要创建列表[‘a’, ‘b’, ‘c’, ‘d’] 的自助采样。一种可能的自主采样是 [‘b’, ‘d’, ‘d’, ‘c’]另一种可能的采样为[‘d’, ‘a’, ‘d’, ‘a’]

接下来,基于这个新创建的数据集来构造决策树。但是,要对我们在介绍决策树时描述的算法稍作修改。

在每个结点处,算法随机选择特征的一个子集,并对其中一个特征寻找最佳测试,而不是对每个结点都寻找最佳测试。

选择的特征个数由 max_features参数来控制。每个结点中特征子集的选择是相互独立的,这样树的每个结点可以使用特征的不同子集来做出决策

由于使用了自助采样,随机森林中构造每棵决策树的数据集都是略有不同的

由于每个结点的特征选择每棵树中的每次划分都是基于特征的不同子集

这两种方法共同保证随机森林中所有树都不相同


在这个过程中的一个关键参数max_features。如果我们设置 max_features等于n_features ,那么每次划分都要考虑数据集的所有特征,在特征选择的过程中没有添加随机性(不过自助采样依然存在随机性)。

如果设置max_features等于 1 ,那么在划分时将无法选择对哪个特征进行测试,只能对随机选择的某个特征搜索不同的阈值

因此,如果max_features较大,那么随机森林中的树将会十分相似,利用最独特的特征可以轻松拟合数据

如果 max_features 较小,那么随机森林中的树将会差异很大,为了很好地拟合数据,每棵树的深度都要很大

想要利用随机森林进行预测,算法首先对森林中的每棵树进行预测。

  • 对于回归问题,我们可以对这些结果取平均值作为最终预测
  • 对于分类问题,则用到了**“软投票”**(soft voting)策略,也就是说,每个算法做出“软”预测,给出每个可能的输出标签的概率。对所有树的预测概率取平均值,然后将概率最大的类别作为预测结果

1.2分析决策树

下面将由 5 棵树组成的随机森林应用到前面研究过的 two_moons数据集上:

from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make_moons
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import mglearn
X,y = make_moons(n_samples=100, noise=0.25, random_state=3)
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=42)
forest = RandomForestClassifier(n_estimators=5, random_state=2)
forest.fit(X_train, y_train)

作为随机森林的一部分,树被保存在estimator_属性中。

我们将每棵树学习到的决策边界可视化,也将他们的总预测可视化:

fig, axes = plt.subplots(2, 3, figsize=(20, 10))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值