(25)模板匹配

/*
*模板匹配(Template Match)
        模板也是一幅图像,是一个小的子图象,要在大的图片里找到与小图片完全相同或者相似的图片,这个过程就叫做匹配,匹配的
        过程就叫做模板匹配
        1:模板匹配就是在整个图像区域发现与给定子图像匹配的小块区域。
        2:所以模板匹配首先需要一个模板图像T(给定的子图像)
        3:另外需要一个待检测的图像-源图像S,有的论文里面叫做目标图像,就是到什么目标图像上去寻找模板上面的东西
        4:工作方法,在带检测图像上,从左到右,从上向下计算模板图像与重叠子图像的匹配度,匹配程度越大,两者相同的可能性越大。
        说白了,模板的图像是一个数据,跟它下面重叠的图像区域也是一个数据,我们要寻找这两个数据的相似性和相似度
*匹配算法介绍
        OpenCV中提供了六种常见的匹配算法如下:
        1:计算平方不同 最小越匹配
        2:计算相关性 越相关值越大
        3:计算相关系数 越相关值越大 以上三种方法得到的还不是归一的,还要把它变到0-1这个大小空间,所以还有它们归一化的方法,因为0-1,所以归一化的方法很容易给定阈值
        4:计算归一化平方不同
        5:计算归一化相关性
        6:计算归一化相关系数
*相关API介绍cv::matchTemplate
        matchTemplate(
            InputArray image, // 源图像,必须是8-bit或者32-bit浮点数图像
            InputArray templ, // 模板图像,类型与输入图像一致
            OutputArray result, // 输出结果,必须是单通道32位浮点数,
            //假设源图像WxH,模板图像wxh,则结果必须为W-w+1, H-h+1的大小。
            int method,             //使用的匹配方法
            InputArray mask=noArray()//(optional)
        )
*/

#include <iostream>
#include <opencv2/opencv.hpp>

using namespace std;
using namespace cv;

Mat src, temp, dst;
int match_method = TM_SQDIFF;
int max_track = 5;

void Match_Demo(int, void*);

int main(int argc, char** argv)
{
    src = imread("D:/A_Graduation/Learning/opencv/learningOpencv/Histogram_Comparison_Source_0.jpg");  // 待检测图像
    temp = imread("D:/A_Graduation/Learning/opencv/learningOpencv/0.jpg"); // 模板图像
    imshow("input", temp);

    const char* trackbar_title = "Match Algo Type:";
    createTrackbar(trackbar_title, "output", &match_method, max_track, Match_Demo);
    Match_Demo(0, 0);

    waitKey(0);
    return 0;
}

void Match_Demo(int, void*)
{
    int width = src.cols - temp.cols + 1;
    int height = src.rows - temp.rows + 1;
    Mat result(width, height, CV_32FC1); //输出结果必须32位浮点数单通道,宽跟长也有一定要求

    matchTemplate(src, temp, result, match_method, Mat());

    normalize(result, result, 0, 1, NORM_MINMAX, -1, Mat());    // 归一化

    //把模板匹配位置的最大值和最小值给找出来,找出它的位置
    Point minLoc; //最小值的位置
    Point maxLoc; //最大值的位置
    double min, max; //最小最大值, 就在result图片上找
    minMaxLoc(result, &min, &max, &minLoc, &maxLoc, Mat()); //这个API就是找出图像的最大值最小值那几个值

    Point temLoc; //最后找到的那个location
    /*1:计算平方不同 最小越匹配
    2:计算相关性 越相关值越大
    3:计算相关系数 越相关值越大
    */
    //区分一下,如果用的是平方不同的方法,它应该取最小值,其他的话应该取最大值,才能把最大最小值给做出来
    if (match_method == TM_SQDIFF || match_method == TM_SQDIFF_NORMED) {
        temLoc = minLoc;
    }
    else
    {
        temLoc = maxLoc;
    }

    src.copyTo(dst);     //左上角坐标         宽和高就是那张图像
    rectangle(dst, Rect(temLoc.x, temLoc.y, temp.cols, temp.rows), Scalar(0, 0, 255), 2, 8);  //把位置绘制出来其实就是,绘制矩形,在dst上面绘制
    rectangle(result, Rect(temLoc.x, temLoc.y, temp.cols, temp.rows), Scalar(0, 0, 255), 2, 8); //在模板匹配结果result上面绘制矩形,它被我们搞到0-1了

    imshow("output", result);
    imshow("src", dst);
}

 

[本课程属于AI完整学习路线套餐,该套餐已“硬核”上线,点击立即学习!] 【为什么要学习深度学习和计算机视觉?】 AI人工智能现在已经成为人类发展最火热的领域。而计算机视觉(CV)是AI最热门,也是落地最多的一个应用方向(人脸识别,自动驾驶,智能安防,车牌识别,证件识别)。所以基于人工智能的计算视觉行业必然会诞生大量的工作和创业的机会。如何能快速的进入CV领域,同时兼备理论基础和实战能力,就成了大多数学习者关心的事情,而这门课就是因为这个初衷而设计的。 【讲师介绍】 CHARLIE 老师 1、人工智能算法科学家2、深圳市海外高层次人才认定(孔雀人才)3、美国圣地亚哥国家超算心博士后4、加利福尼亚大学圣地亚哥全奖博士5、参与美国自然科学基金(NSF)及加州能源局 (CEC)资助的392MWIVANPAH等智慧电网项目6、21篇国际期刊文章(sci收录17篇),总引用接近10007、第一作者发明专利11份【推荐你学习这门课的理由:知识体系完整+丰富学习资料】 1、本课程总计9大章节,是一门系统入门计算机视觉的课程,未来将持续更新。2、课程从计算机视觉理论知识出发,理论结合实战,手把手的实战代码实现(霍夫变换与模板匹配,AlexNet OCR应用,VGG迁移学习,多标签分类算法工程) 3、带你了解最前沿技术,各类型算法的优点和缺点,掌握数据增强,Batchnormalization, Dropout,迁移学习等优化技巧,搭建实用的深度学习应用模型 4、学习完后,你将具有深度学习与计算视觉的项目能力,比如大学生学完可以具备独立完成机器视觉类毕业设计的能力,在求职过程可以体系化的讲解机器视觉核心知识点,初步达到人工智能领域机器视觉工程师的水平 【学完后我将达到什么水平?】 1、零基础入门计算视觉,学习掌握并应用从经典图像处理到深度学习分类任务的要点知识 2、掌握数据增强,迁移学习等优化技巧,搭建实用的深度学习应用模型 3、学习完课程,可以独立应用多个经典算法和深度学习算法 4、以大学毕业设计,面试找工作为目标,手把手带大家编程,即使没有太多计算视觉的背景知识也可以循序渐进完成课程,获得实战项目的经验 【面向人群】 1、对AI感兴趣,想要系统学习计算机视觉的学员 2、需要毕业设计的大学生 3、做图像分析或相关数据分析的研究生 4、准备面试计算视觉和深度学习岗位的应聘者 5、希望在项目引入计算视觉/深度学习技术的开发人员 【课程知识体系图】 【实战项目】
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值