/*
*模板匹配(Template Match)
模板也是一幅图像,是一个小的子图象,要在大的图片里找到与小图片完全相同或者相似的图片,这个过程就叫做匹配,匹配的
过程就叫做模板匹配
1:模板匹配就是在整个图像区域发现与给定子图像匹配的小块区域。
2:所以模板匹配首先需要一个模板图像T(给定的子图像)
3:另外需要一个待检测的图像-源图像S,有的论文里面叫做目标图像,就是到什么目标图像上去寻找模板上面的东西
4:工作方法,在带检测图像上,从左到右,从上向下计算模板图像与重叠子图像的匹配度,匹配程度越大,两者相同的可能性越大。
说白了,模板的图像是一个数据,跟它下面重叠的图像区域也是一个数据,我们要寻找这两个数据的相似性和相似度
*匹配算法介绍
OpenCV中提供了六种常见的匹配算法如下:
1:计算平方不同 最小越匹配
2:计算相关性 越相关值越大
3:计算相关系数 越相关值越大 以上三种方法得到的还不是归一的,还要把它变到0-1这个大小空间,所以还有它们归一化的方法,因为0-1,所以归一化的方法很容易给定阈值
4:计算归一化平方不同
5:计算归一化相关性
6:计算归一化相关系数
*相关API介绍cv::matchTemplate
matchTemplate(
InputArray image, // 源图像,必须是8-bit或者32-bit浮点数图像
InputArray templ, // 模板图像,类型与输入图像一致
OutputArray result, // 输出结果,必须是单通道32位浮点数,
//假设源图像WxH,模板图像wxh,则结果必须为W-w+1, H-h+1的大小。
int method, //使用的匹配方法
InputArray mask=noArray()//(optional)
)
*/
#include <iostream>
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;
Mat src, temp, dst;
int match_method = TM_SQDIFF;
int max_track = 5;
void Match_Demo(int, void*);
int main(int argc, char** argv)
{
src = imread("D:/A_Graduation/Learning/opencv/learningOpencv/Histogram_Comparison_Source_0.jpg"); // 待检测图像
temp = imread("D:/A_Graduation/Learning/opencv/learningOpencv/0.jpg"); // 模板图像
imshow("input", temp);
const char* trackbar_title = "Match Algo Type:";
createTrackbar(trackbar_title, "output", &match_method, max_track, Match_Demo);
Match_Demo(0, 0);
waitKey(0);
return 0;
}
void Match_Demo(int, void*)
{
int width = src.cols - temp.cols + 1;
int height = src.rows - temp.rows + 1;
Mat result(width, height, CV_32FC1); //输出结果必须32位浮点数单通道,宽跟长也有一定要求
matchTemplate(src, temp, result, match_method, Mat());
normalize(result, result, 0, 1, NORM_MINMAX, -1, Mat()); // 归一化
//把模板匹配位置的最大值和最小值给找出来,找出它的位置
Point minLoc; //最小值的位置
Point maxLoc; //最大值的位置
double min, max; //最小最大值, 就在result图片上找
minMaxLoc(result, &min, &max, &minLoc, &maxLoc, Mat()); //这个API就是找出图像的最大值最小值那几个值
Point temLoc; //最后找到的那个location
/*1:计算平方不同 最小越匹配
2:计算相关性 越相关值越大
3:计算相关系数 越相关值越大
*/
//区分一下,如果用的是平方不同的方法,它应该取最小值,其他的话应该取最大值,才能把最大最小值给做出来
if (match_method == TM_SQDIFF || match_method == TM_SQDIFF_NORMED) {
temLoc = minLoc;
}
else
{
temLoc = maxLoc;
}
src.copyTo(dst); //左上角坐标 宽和高就是那张图像
rectangle(dst, Rect(temLoc.x, temLoc.y, temp.cols, temp.rows), Scalar(0, 0, 255), 2, 8); //把位置绘制出来其实就是,绘制矩形,在dst上面绘制
rectangle(result, Rect(temLoc.x, temLoc.y, temp.cols, temp.rows), Scalar(0, 0, 255), 2, 8); //在模板匹配结果result上面绘制矩形,它被我们搞到0-1了
imshow("output", result);
imshow("src", dst);
}