/*
*图像矩(Image Moments) 几何矩 中心矩 中心归一化矩
二值图像提取的对象,对那个对象获得轮廓,对那个轮廓进行几何矩的计算,那么我们就得到轮廓的特征,一般计算二阶,三阶,弧矩
* API介绍与使用-计算矩cv::moments
moments(
InputArray array,//输入数据 轮廓
bool binaryImage=false // 是否为二值图像
)
contourArea(
InputArray contour,//输入轮廓数据 求图像的面积
bool oriented// 默认false、返回绝对值
)
arcLength(
InputArray curve,//输入曲线数据
bool closed// 是否是封闭曲线
)
步骤
1:提取图像边缘
2:发现轮廓
3:计算每个轮廓对象的矩
4:计算每个对象的中心、弧长、面积
*/
#include <iostream>
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;
Mat src, gray_src;
int threshold_value = 150;
int threshold_max = 255;
RNG rng(12345);
void Demo_Moments(int, void*);
int main()
{
src = imread("D:/A_Graduation/Learning/opencv/learningOpencv/cells.jpg");
cvtColor(src, gray_src, CV_BGR2GRAY);
GaussianBlur(gray_src, gray_src, Size(3, 3), 0, 0); //Canny对噪声比较敏感
imshow("input", src);
createTrackbar("Threshold Value : ", "output", &threshold_value, threshold_max, Demo_Moments);
Demo_Moments(0, 0);
waitKey(0);
return 0;
}
void Demo_Moments(int, void*)
{
Mat canny_output;
Canny(gray_src, canny_output, threshold_value, threshold_value * 2, 3, false);
vector<vector<Point>> contours;
vector<Vec4i> hierachy;
findContours(canny_output, contours, hierachy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(0, 0));
//对每一个轮廓计算它的矩,得到图像中心,同样可以计算它的面积跟弧长,这些可以对图像当中的对象进行一些度量
vector<Moments> contours_moments(contours.size()); //每个contour都要有一个Moments就定义一个Moments数组,记得给它初始化一下大小
vector<Point2f> ccs(contours.size()); //获取它的中心位置,计算出来每一个Moments都有中心位置(质心)
for (size_t i = 0; i < contours.size(); i++)
{
//第i个Moments和第i个中心位置
contours_moments[i] = moments(contours[i]);
ccs[i] = Point(static_cast<float>(contours_moments[i].m10 / contours_moments[i].m00), static_cast<float>(contours_moments[i].m01 / contours_moments[i].m00));
//static_cast<float> c++里面的函数,强制转型
}
//把中心位置绘制出来 在contour上面给它绘制出来
Mat drawImg;// = Mat::zeros(src.size(), CV_8UC3);
src.copyTo(drawImg);
for (size_t i = 0; i < contours.size(); i++)
{
if (contours[i].size() < 100) //contour小于一定程度的,点数比较少的就不要弄出来
{
continue;
}
Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
printf("center point x : %.2f y : %.2f\n", ccs[i].x, ccs[i].y);
printf("contours %d area : %.2f arc length : %.2f\n", i, contourArea(contours[i]), arcLength(contours[i], true)); //第i个面积和弧长
drawContours(drawImg, contours, i, color, 2, 8, hierachy, 0, Point(0, 0));
circle(drawImg, ccs[i], 2, color,2, 8);
}
imshow("output", drawImg);
return;
}