(26)轮廓发现

/*
*轮廓发现
* 区别于轮廓和边缘的概念,轮廓也是有一定梯度层次的,有大的小的不同的轮廓
*轮廓发现是基于图像边缘提取的基础寻找对象轮廓的方法。所以边缘提取的阈值选定会影响最终轮廓发现结果。
*  API介绍:findContours发现轮廓 在灰度图像上进行轮廓发现
        cv::findContours(
                InputOutputArray  binImg,     // 输入图像,非0的像素被看成1,0的像素值保持不变,8-bit
                OutputArrayOfArrays  contours,    //  全部发现的轮廓对象
                OutputArray  hierachy,    // 图该的拓扑结构,可选,该轮廓发现算法正是基于图像拓扑结构实现。
                int mode,     //  轮廓返回的模式 树
                int method,    // 发现方法 一般用简单相似的方法
                Point offset=Point()    //轮廓像素的位移,默认(0, 0)没有位移
        )
        API介绍:drawContours绘制轮廓 把轮廓绘上去
        drawContours(
                InputOutputArray  binImg,     // 输出图像 绘制到这个图像上去
                OutputArrayOfArrays  contours,    //  全部发现的轮廓对像 (绘制什么)
                Int contourIdx    // 轮廓索引号 并不是说一次就把全部的绘制好了,一次只能绘制一个,轮廓索引号就是指你是第几个轮廓
                const Scalar & color,    // 绘制时候颜色
                int  thickness,    // 绘制线宽
                int  lineType,    // 线的类型LINE_8
                InputArray hierarchy,    // 拓扑结构图
                int maxlevel,    // 最大层数, 0只绘制当前的,1表示绘制绘制当前及其内嵌的轮廓
                Point offset=Point()    // 轮廓位移,可选
        )
        步骤
        1:输入图像转为灰度图像cvtColor
        2:使用Canny进行边缘提取,得到二值图像
        3:使用findContours寻找轮廓
        4:使用drawContours绘制轮廓
*/

#include <iostream>
#include <opencv2/opencv.hpp>

using namespace std;
using namespace cv;

Mat src, dst;
int threshold_value = 70;
int threshold_max = 255;
RNG rng;

void Demo_Contours(int, void*);

int main()
{
     src = imread("D:/A_Graduation/Learning/opencv/learningOpencv/Histogram_Comparison_Source_1.jpg");
    imshow("input-image", src);
    cvtColor(src, src, CV_BGR2GRAY);

    createTrackbar("Threshold Value:", "output", &threshold_value, threshold_max, Demo_Contours);
    Demo_Contours(0, 0);

    waitKey(0);
    return 0;
}

void Demo_Contours(int, void*)
{
    Mat canny_output;
    Canny(src, canny_output, threshold_value, threshold_value * 2, 3, false);

     //发现轮廓                                                           返回一个轮廓树
    vector<vector<Point>> contours;
    vector<Vec4i> hierachy;
    findContours(canny_output, contours, hierachy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(0, 0));

    dst = Mat::zeros(src.size(), CV_8UC3); //把轮廓画到这个上面去
    RNG rng(12345);
    for (size_t i = 0; i < contours.size(); i++)
    {
        Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));

        drawContours(dst, contours, i, color, 2, 8, hierachy, 0, Point(0, 0));
    }
    imshow("output", dst);
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值