/*
*轮廓发现
* 区别于轮廓和边缘的概念,轮廓也是有一定梯度层次的,有大的小的不同的轮廓
*轮廓发现是基于图像边缘提取的基础寻找对象轮廓的方法。所以边缘提取的阈值选定会影响最终轮廓发现结果。
* API介绍:findContours发现轮廓 在灰度图像上进行轮廓发现
cv::findContours(
InputOutputArray binImg, // 输入图像,非0的像素被看成1,0的像素值保持不变,8-bit
OutputArrayOfArrays contours, // 全部发现的轮廓对象
OutputArray hierachy, // 图该的拓扑结构,可选,该轮廓发现算法正是基于图像拓扑结构实现。
int mode, // 轮廓返回的模式 树
int method, // 发现方法 一般用简单相似的方法
Point offset=Point() //轮廓像素的位移,默认(0, 0)没有位移
)
API介绍:drawContours绘制轮廓 把轮廓绘上去
drawContours(
InputOutputArray binImg, // 输出图像 绘制到这个图像上去
OutputArrayOfArrays contours, // 全部发现的轮廓对像 (绘制什么)
Int contourIdx // 轮廓索引号 并不是说一次就把全部的绘制好了,一次只能绘制一个,轮廓索引号就是指你是第几个轮廓
const Scalar & color, // 绘制时候颜色
int thickness, // 绘制线宽
int lineType, // 线的类型LINE_8
InputArray hierarchy, // 拓扑结构图
int maxlevel, // 最大层数, 0只绘制当前的,1表示绘制绘制当前及其内嵌的轮廓
Point offset=Point() // 轮廓位移,可选
)
步骤
1:输入图像转为灰度图像cvtColor
2:使用Canny进行边缘提取,得到二值图像
3:使用findContours寻找轮廓
4:使用drawContours绘制轮廓
*/
#include <iostream>
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;
Mat src, dst;
int threshold_value = 70;
int threshold_max = 255;
RNG rng;
void Demo_Contours(int, void*);
int main()
{
src = imread("D:/A_Graduation/Learning/opencv/learningOpencv/Histogram_Comparison_Source_1.jpg");
imshow("input-image", src);
cvtColor(src, src, CV_BGR2GRAY);
createTrackbar("Threshold Value:", "output", &threshold_value, threshold_max, Demo_Contours);
Demo_Contours(0, 0);
waitKey(0);
return 0;
}
void Demo_Contours(int, void*)
{
Mat canny_output;
Canny(src, canny_output, threshold_value, threshold_value * 2, 3, false);
//发现轮廓 返回一个轮廓树
vector<vector<Point>> contours;
vector<Vec4i> hierachy;
findContours(canny_output, contours, hierachy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(0, 0));
dst = Mat::zeros(src.size(), CV_8UC3); //把轮廓画到这个上面去
RNG rng(12345);
for (size_t i = 0; i < contours.size(); i++)
{
Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
drawContours(dst, contours, i, color, 2, 8, hierachy, 0, Point(0, 0));
}
imshow("output", dst);
}