题目描述
小城和小华都是热爱数学的好学生,最近,他们不约而同地迷上了数独游戏,好胜的他们想用数独来一比高低。但普通的数独对他们来说都过于简单了,于是他们向 Z 博士请教,Z 博士拿出了他最近发明的“靶形数独”,作为这两个孩子比试的题目。
靶形数独的方格同普通数独一样,在
9
格宽×
上图具体的分值分布是:最里面一格(黄色区域)为
总分数即每个方格上的分值和完成这个数独时填在相应格上的数字的乘积的总和。如图,在以下的这个已经填完数字的靶形数独游戏中,总分数为 2829 。游戏规定,将以总分数的高低决出胜负。
由于求胜心切,小城找到了善于编程的你,让你帮他求出,对于给定的靶形数独,能够得到的最高分数。
输入输出格式
输入格式:
一共
9
行。每行
输出格式:
输出文件 sudoku.out 共
输出可以得到的靶形数独的最高分数。如果这个数独无解,则输出整数 −1
输入输出样例
输入样例#1:
7 0 0 9 0 0 0 0 1
1 0 0 0 0 5 9 0 0
0 0 0 2 0 0 0 8 0
0 0 5 0 2 0 0 0 3
0 0 0 0 0 0 6 4 8
4 1 3 0 0 0 0 0 0
0 0 7 0 0 2 0 9 0
2 0 1 0 6 0 8 0 4
0 8 0 5 0 4 0 1 2
输出样例#1:
2829
输入样例#2:
0 0 0 7 0 2 4 5 3
9 0 0 0 0 8 0 0 0
7 4 0 0 0 5 0 1 0
1 9 5 0 8 0 0 0 0
0 7 0 0 0 0 0 2 5
0 3 0 5 7 9 1 0 8
0 0 0 6 0 1 0 0 0
0 6 0 9 0 0 0 0 1
0 0 0 0 0 0 0 0 6
输出样例#2:
2852
【数据范围】
40%
的数据,数独中非
0
数的个数不少于
80%
的数据,数独中非
0
数的个数不少于
100%
的数据,数独中非
0
数的个数不少于
NOIP 2009 提高组 第四题
solution
我们玩数独的时候肯定是先填已经有数最多的那一行或者一列或者一个九宫格
数独大佬请无视这句话所以我们搜索的时候就可以这样贪心的去搜,优先走填的数可能性小的分支
搜索就是dfs加上回溯,没什么好说的…
感觉这道题水爆了
code
#include<cstdio>
#include<algorithm>
using namespace std;
const int mark[10][10]={{0,0,0,0,0, 0,0,0,0,0},
{0,6,6,6,6, 6,6,6,6,6},
{0,6,7,7,7, 7,7,7,7,6},
{0,6,7,8,8, 8,8,8,7,6},
{0,6,7,8,9, 9,9,8,7,6},
{0,6,7,8,9,10,9,8,7,6},
{0,6,7,8,9, 9,9,8,7,6},
{0,6,7,8,8, 8,8,8,7,6},
{0,6,7,7,7, 7,7,7,7,6},
{0,6,6,6,6, 6,6,6,6,6}};
const int pos[10][10]={{0,0,0,0,0,0,0,0,0,0},
{0,1,1,1,2,2,2,3,3,3},
{0,1,1,1,2,2,2,3,3,3},
{0,1,1,1,2,2,2,3,3,3},
{0,4,4,4,5,5,5,6,6,6},
{0,4,4,4,5,5,5,6,6,6},
{0,4,4,4,5,5,5,6,6,6},
{0,7,7,7,8,8,8,9,9,9},
{0,7,7,7,8,8,8,9,9,9},
{0,7,7,7,8,8,8,9,9,9}};
struct lattice {
int R,C;bool vis;
lattice(int R=0,int C=0):
R(R),C(C) {}
bool operator < (const lattice &a) const {
if(R!=a.R) return R>a.R;
return C>a.C;
}
}lat[90];
bool row[10][10],column[10][10],square[10][10];
int ans=-1,Score,need;
void Astar(int cnt,int Score) {
if(cnt==need+1) {
ans=Score>ans?Score:ans;
return;
}
int Pos,mincan=10;
for(int i=1;i<=need;i++)
if(!lat[i].vis) {
int R=lat[i].R,C=lat[i].C,Possible=0;
for(int j=1;j<=9;j++) {
if(row[R][j]||column[C][j]||square[pos[R][C]][j]) continue;
Possible++;
}
if(Possible<mincan) mincan=Possible,Pos=i;
if(Possible<=1) break;
}
if(!mincan) return;lat[Pos].vis=true;
for(int i=1;i<=9;i++) {
int R=lat[Pos].R,C=lat[Pos].C;
if(row[R][i]||column[C][i]||square[pos[R][C]][i]) continue;
row[R][i]=column[C][i]=square[pos[R][C]][i]=true;
Astar(cnt+1,Score+i*mark[R][C]);
row[R][i]=column[C][i]=square[pos[R][C]][i]=false;
}
lat[Pos].vis=false;return;
}
int main() {
for(int i=1;i<=9;i++)
for(int j=1,k;j<=9;j++) {
scanf("%d",&k);
if(k) {
row[i][k]=column[j][k]=square[pos[i][j]][k]=true;
Score+=k*mark[i][j];
} else lat[++need]=lattice(i,j);
}
sort(lat+1,lat+need+1);
Astar(1,Score);
printf("%d",ans);
return 0;
}