知识图谱导论
文章平均质量分 89
本专栏主打学习《知识图谱实战构建方法与行业应用》并进行自己总结探索,为后续知识图谱的学习研究打下坚实基础~~~
小馒头学python
这个作者很懒,什么都没留下…
展开
-
第9章:深度探讨知识问答系统评测:智能背后的挑战与技术方案
在当今数字化信息爆炸的时代,知识问答系统以其高效解决用户问题的能力逐渐成为人工智能领域的热门话题。这种系统通过自然语言处理和机器学习技术,使计算机能够理解和回答用户提出的问题,为用户提供更智能化的服务。知识问答系统是一种基于人工智能技术的应用,旨在通过处理自然语言,从结构化和非结构化的数据中提取信息,以回答用户提出的问题。与传统搜索引擎相比,知识问答系统更注重精准、直接的回答,为用户提供更加智能、便捷的信息服务。原创 2023-12-18 15:44:41 · 3646 阅读 · 67 评论 -
neo4j命令,附官方文档链接
Neo4j是一种流行的图形数据库,用于存储和查询图数据。Neo4j有一个称为Cypher的查询语言,用于执行各种操作。这只是一小部分Cypher查询和Neo4j命令的示例。你可以根据具体的需求和数据模型编写更复杂的查询。原创 2023-12-16 22:04:02 · 1813 阅读 · 19 评论 -
第8章:数字化引领革命:知识图谱与智能运维的魔幻交融
知识评估(Knowledge Assessment):定义:知识评估是对个体或组织在特定领域或主题上所具有的知识水平进行评估和测量的过程。目的:评估学生、员工或专业人士的学术、职业或专业知识水平。确定一个人在某个领域的掌握程度,以便做出相应的培训或教育决策。为招聘、晋升或提供奖学金等方面提供依据。工具和方法:考试和测验:通过书面或在线测试来测量知识水平。项目和作品评估:评估个体能否应用知识解决实际问题。面试:通过对话来了解个体的理解和思考过程。原创 2023-12-15 13:22:49 · 1530 阅读 · 9 评论 -
第7章:深度剖析知识图谱中的知识推理:方法与应用探究
定义: 知识推理是一项复杂的认知过程,通过建立新的关联和逻辑推断,从已知信息中产生新的知识。在知识图谱中,这一过程成为了解决实体之间关系、预测新事实的关键。简单的例子就是:(研究所,是科研院所)和(科研院所,承担,教学任务)可以推断出(研究所,承担,教学任务)知识推理在推动知识图谱技术发展方面发挥着关键作用。透过不同的推理方法,我们能够更全面、深入地理解知识图谱中的信息网络。未来,随着技术的不断创新,知识推理将在更广泛的应用领域发挥其强大的潜力,为我们提供更智能、高效的决策支持。原创 2023-12-13 15:04:59 · 1818 阅读 · 13 评论 -
第6章:知识建模:概述、方法、实例
知识建模是将领域内的知识、概念和关系转化为计算机可处理的形式的过程。它涉及到对现实世界的抽象和形式化,以便计算机能够理解、推理和处理这些知识。知识建模的目标是创建一个结构化的知识表示,以支持信息管理、知识发现、决策支持等应用。通俗的讲,就是经过知识抽取、知识融合之后,本体和实体从数据源中被识别、抽取,并且经过消岐,统一处理后,此时得到的关联数据就是对客观事实的基本表达,但客观事实还不是知识图谱需要的知识体系,想要获得结构化的知识网络,还需要经过知识建模,知识推理,质量评估等知识加工的过程。原创 2023-12-12 16:06:46 · 1601 阅读 · 0 评论 -
第5章:知识存储:概述、方法、实战
知识从某种程度上也属于一种数据"知识存储"指的是将信息、数据、经验和概念等以某种形式记录下来,并存储在特定的媒介或系统中,以便后续检索、利用和共享。知识存储是知识管理的一部分,它有助于组织、保存和传递知识,以便在需要时能够方便地获取和利用。知识存储可以采用多种形式,包括文本文档、数据库、图形、多媒体文件等。这些存储形式可以涵盖各种领域,包括科学、技术、业务、文化等。在组织和企业中,知识存储通常与知识管理系统(Knowledge Management System)相关联,以促进知识的共享、协作和创新。原创 2023-12-11 12:43:31 · 1945 阅读 · 10 评论 -
第4章:知识融合:概述、方法
知识融合(Knowledge Fusion)的概念最早出现1983年发表的文献中,并在20世纪90年代得到研究者的广泛关注。在维基百科中“知识融合”的定义是,“对来自多源的不同概念、上下文和不同表达等信息进行融合的过程除此之外,有一些专家提出知识融合的目标是产生新的知识,是对松耦合来源中的知识进行集成,构成一个合成的资源,用来补充不完全的知识和获取新知识。还有一些专家认为,知识融合是知识组织与信息融合的交叉学科,它面向需求和创新,原创 2023-12-10 17:08:13 · 1934 阅读 · 9 评论 -
第3章:知识表示:概述、符号知识表示、向量知识表示
知识表示是指将知识以一种机器可理解的形式表示出来,以便计算机系统能够理解、存储、检索和处理这些知识。在人工智能领域中,知识表示是构建智能系统的关键组成部分,因为它使计算机能够利用先前学到的知识来推理、解决问题和做出决策。原创 2023-12-06 16:46:18 · 1927 阅读 · 16 评论 -
第2章 知识抽取:概述、方法
上图清晰的展示了知识图谱技术架构中的知识抽取如果从专业的角度去定义知识抽取的定义:从不同来源、不同结构的信息资源中进行知识提取,形成结构的知识并存储到知识图谱中。一般来说,知识抽取主要是面向链接开发数据,大家获取不知道何为链接开放数据,下面我为大家整理了一下链接开放数据(Linked Open Data,LOD)是一种数据发布和共享的方法,通过使用统一的标准化格式和互联网链接,将不同来源的数据链接在一起,形成一个全球性的、互联的知识网络。这种方法的目标是使得数据更容易被发现、访问、集成和利用。原创 2023-12-05 15:15:28 · 2127 阅读 · 61 评论 -
第1章 理解知识图谱:知识图谱现状、知识图谱应用场景(二)
💗💗💗欢迎来到我的博客,你将找到有关如何使用技术解决问题的文章,也会找到某个技术的学习路线。无论你是何种职业,我都希望我的博客对你有所帮助。最后不要忘记订阅我的博客以获取最新文章,也欢迎在文章下方留下你的评论和反馈。我期待着与你分享知识、互相学习和建立一个积极的社区。原创 2023-12-04 15:12:12 · 1011 阅读 · 10 评论 -
第1章 理解知识图谱(一)
哲学家柏拉图先生曾经指明,知识的三个条件合理性真实性被相信从大白话来讲就是知识是人类通过观察学习等行为进而获得总结的产物或者说是集合。如果我们从不同的研究视角、研究目的以及多知识的不同认识程度对知识进行分类的话,可以分为以下几种:首先是层次划分零级知识:最基本的知识,定义、定理等,问题求解的常识性和原理性知识。一级知识:第二层知识,启发式知识,可弥补零级知识的不足,提高求解的效率。二级知识:第三层知识,控制性知识,对低层知识起到指导作用,组织,运用零级和一级知识。原创 2023-11-28 16:48:53 · 1381 阅读 · 10 评论