刷题记录|Day27 ● 39. 组合总和 ● 40.组合总和II ● 131.分割回文串

文章详细介绍了如何使用回溯算法解决组合总和问题,包括无重复元素和有限重复元素的情况。在解题思路部分,强调了回溯法的三部曲——确定参数、终止条件和单次循环逻辑,并提供了具体的代码实现。示例展示了在不同输入下的正确输出,强调了代码的正确性和效率。
摘要由CSDN通过智能技术生成

39. 组合总和

题目描述

给你一个 无重复元素 的整数数组 candidates 和一个目标整数 target ,找出 candidates 中可以使数字和为目标数 target 的 所有 不同组合 ,并以列表形式返回。你可以按 任意顺序 返回这些组合。

candidates 中的 同一个 数字可以 无限制重复被选取 。如果至少一个数字的被选数量不同,则两种组合是不同的。

对于给定的输入,保证和为 target 的不同组合数少于 150 个。

示例 1:

输入:candidates = [2,3,6,7], target = 7
输出:[[2,2,3],[7]]
解释:
2 和 3 可以形成一组候选,2 + 2 + 3 = 7 。注意 2 可以使用多次。
7 也是一个候选, 7 = 7 。
仅有这两种组合。

示例 2:

输入: candidates = [2,3,5], target = 8
输出: [[2,2,2,2],[2,3,3],[3,5]]

示例 3:

输入: candidates = [2], target = 1
输出: []

提示:

  • 1 <= candidates.length <= 30
  • 2 <= candidates[i] <= 40
  • candidates 的所有元素 互不相同
  • 1 <= target <= 40

解题思路

本题和77.组合 ,216.组合总和III 的区别是:本题没有数量要求,可以无限重复,但是有总和的限制,所以间接的也是有个数的限制。

本题搜索的过程抽象成树形结构如下:
在这里插入图片描述
注意图中叶子节点的返回条件,因为本题没有组合数量要求,仅仅是总和的限制,所以递归没有层数的限制,只要选取的元素总和超过target,就返回!

回溯三部曲

确定参数数量

这里依然是定义两个全局变量,二维数组result存放结果集,数组path存放符合条件的结果。(这两个变量可以作为函数参数传入)

首先是题目中给出的参数,集合candidates, 和目标值target。

此外我还定义了int型的sum变量来统计单一结果path里的总和,其实这个sum也可以不用,用target做相应的减法就可以了,最后如何target==0就说明找到符合的结果了,但为了代码逻辑清晰,我依然用了sum。

vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int> & candidates, int target , int sum , int startIndex)
确定终止条件
if(sum > target) return ; 
if( sum == target ){ result.push_back(path);return ;}
确定单次循环的逻辑
for(int i = startIndex; i< candidates.size();++i)
        {
            path.push_back(candidates[i]);
            sum += candidates[i];
            backtracking(candidates,target,sum,i);
            sum -= candidates[i];
            path.pop_back();
        }
代码结合

class Solution {
private:
    
    vector<vector<int>> result;

    vector<int> path;
    void backtracking(vector<int> & candidates, int target , int sum , int startIndex)
    {
        if(sum > target) return ; 
        if( sum == target ){ result.push_back(path);return ;}

        for(int i = startIndex; i< candidates.size();++i)
        {
            path.push_back(candidates[i]);
            sum += candidates[i];
            backtracking(candidates,target,sum,i);
            sum -= candidates[i];
            path.pop_back();
        }
    }
public:
    vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
        result.clear();
        path.clear();
        backtracking(candidates,target,0,0);
        return result;
        

    }
};

40.组合总和II

题目描述

给定一个候选人编号的集合 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。

candidates 中的每个数字在每个组合中只能使用 一次

**注意:**解集不能包含重复的组合。

示例 1:

输入: candidates = [10,1,2,7,6,1,5], target = 8,
输出:
[
[1,1,6],
[1,2,5],
[1,7],
[2,6]
]

示例 2:

输入: candidates = [2,5,2,1,2], target = 5,
输出:
[
[1,2,2],
[5]
]

提示:

  • 1 <= candidates.length <= 100
  • 1 <= candidates[i] <= 50
  • 1 <= target <= 30

解题思路

代码整合

class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;

    void backtracking(vector<int> &candidates, int target, int sum, int startIndex,vector<int>&used)
    {
        if(sum > target )
        {
            return;
        }
        else if( sum == target)
        {
            result.push_back(path);
            return ;
        }

        for( int i = startIndex; i<candidates.size();++i)
        {
           if (i > 0 && candidates[i] == candidates[i - 1] && used[i - 1] == false) {
                 continue;
            }

            used[i] = 1;
            path.push_back(candidates[i]);
            sum += candidates[i];
            backtracking(candidates,target,sum,i+1,used);
            used[i] = 0;
            sum -= candidates[i];
            path.pop_back();

            

        }
    }
public:
    vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
        vector<int> used(candidates.size(),0);
        sort(candidates.begin(),candidates.end());
        result.clear();
        path.clear();
        backtracking(candidates,target,0,0,used);
        return result;


    }
};

131.分割回文串

题目描述

给你一个字符串 s,请你将 s 分割成一些子串,使每个子串都是 回文串 。返回 s 所有可能的分割方案。

回文串 是正着读和反着读都一样的字符串。

示例 1:

输入:s = "aab"
输出:[["a","a","b"],["aa","b"]]

示例 2:

输入:s = "a"
输出:[["a"]]

提示:

  • 1 <= s.length <= 16
  • s 仅由小写英文字母组成

解题思路

本题这涉及到两个关键问题:

  1. 切割问题,有不同的切割方式
  2. 判断回文

相信这里不同的切割方式可以搞懵很多同学了。

这种题目,想用for循环暴力解法,可能都不那么容易写出来,所以要换一种暴力的方式,就是回溯。

一些同学可能想不清楚 回溯究竟是如何切割字符串呢?

我们来分析一下切割,其实切割问题类似组合问题

例如对于字符串abcdef:

  • 组合问题:选取一个a之后,在bcdef中再去选取第二个,选取b之后在cdef中再选取第三个…。
  • 切割问题:切割一个a之后,在bcdef中再去切割第二段,切割b之后在cdef中再切割第三段…。

感受出来了不?

所以切割问题,也可以抽象为一棵树形结构,如图:
在这里插入图片描述

回溯三部曲

确定参数
在这里插入代码片
确定终止条件

从树形结构的图中可以看出:切割线切到了字符串最后面,说明找到了一种切割方法,此时就是本层递归的终止条件。

那么在代码里什么是切割线呢?

在处理组合问题的时候,递归参数需要传入startIndex,表示下一轮递归遍历的起始位置,这个startIndex就是切割线。

所以终止条件代码如下:

void backtracking (const string& s, int startIndex) {
    // 如果起始位置已经大于s的大小,说明已经找到了一组分割方案了
    if (startIndex >= s.size()) {
        result.push_back(path);
        return;
    }
}
确定单次循环的逻辑

来看看在递归循环中如何截取子串呢?

for (int i = startIndex; i < s.size(); i++)循环中,我们 定义了起始位置startIndex,那么 [startIndex, i] 就是要截取的子串。

首先判断这个子串是不是回文,如果是回文,就加入在vector<string> path中,path用来记录切割过的回文子串。

代码如下:

for (int i = startIndex; i < s.size(); i++) {
    if (isPalindrome(s, startIndex, i)) { // 是回文子串
        // 获取[startIndex,i]在s中的子串
        string str = s.substr(startIndex, i - startIndex + 1);
        path.push_back(str);
    } else {                // 如果不是则直接跳过
        continue;
    }
    backtracking(s, i + 1); // 寻找i+1为起始位置的子串
    path.pop_back();        // 回溯过程,弹出本次已经填在的子串
}
代码整合
class Solution {
  vector<string> path;
  vector<vector<string>> result;
  bool isPalindrome(string s, int i, int j)
  {
      for(int start = i , end = j ; start<end; ++start,--end)
      {
          if(s[start]!=s[end])
            {
                return false;
            }
      }
      return true;
  }
    void backtracking(string s, int startIndex)
    {
        if(startIndex >=s.size())
        {
            result.push_back(path);
            return ;
        }
        for(int i = startIndex; i<s.size();++i)
        {
            if (isPalindrome(s, startIndex, i)) { // 是回文子串
        // 获取[startIndex,i]在s中的子串
                string str = s.substr(startIndex, i - startIndex + 1);
                path.push_back(str);
            } else {                // 如果不是则直接跳过
                    continue;
            }
        backtracking(s, i + 1); // 寻找i+1为起始位置的子串
        path.pop_back();  
        }
    }
public:
    vector<vector<string>> partition(string s) {
        backtracking(s,0);
        return result;

    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值