题目描述:
一个正整数N的因子中可能存在若干连续的数字。例如630可以分解为3*5*6*7,其中5、6、7就是3个连续的数字。给定任一正整数N,要求编写程序求出最长连续因子的个数,并输出最小的连续因子序列。
输入格式:
输入在一行中给出一个正整数N(1<N<231)。
输出格式:
首先在第1行输出最长连续因子的个数;然后在第2行中按“因子1*因子2*……*因子k”的格式输出最小的连续因子序列,其中因子按递增顺序输出,1不算在内。
输入样例:
630
输出样例:
3
5*6*7
思路:以2到sqrt(N)依次为连续因子的首个因子,寻找其可以构成的连续因子长度,进而得到结果。
#include<iostream>
#include<math.h>
using namespace std;
int main()
{
int N;
//start index
int index;
//current length
int local;
//final length
int global = 0;
//temporary variable
int num;
cin>>N;
for(int i=2;i<=sqrt(N)+1;i++)
{
local = 0;
num = N;
for(int j=i;j<=sqrt(N)+1;j++)
{
if(num%j==0)
{
local++;
num /= j;
}
else
{
break;
}
}
if(local>global)
{
global = local;
index = i;
}
}
//deal with prime number
if(global==0)
{
cout<<1<<endl;
cout<<N;
return 0;
}
cout<<global<<endl;
for(int i=0;i<global;i++)
{
cout<<index+i;
if(i!=global-1)
cout<<"*";
}
return 0;
}