奇函数的定义
对于函数f(x), 如果x是在f(x) 的定义内, 如果任意x , 都有f(-x) = -f(x) 那么f(x) 是奇函数
数学表达:
f
(
−
x
)
=
−
f
(
x
)
,
x
∈
D
(
f
)
f(-x) = - f(x), x \in D(f)
f(−x)=−f(x),x∈D(f)
很简单
在函数图像里, 奇函数都是对于原点对称
奇函数的例子
1. 一次线性函数
例如 f ( x ) = 2 x f(x) = 2x f(x)=2x
注意的是,
f
(
x
)
=
2
x
+
n
,
n
≠
0
f(x) = 2x + n, n \neq 0
f(x)=2x+n,n=0 这个并不是奇函数
明显
f
(
−
1
)
=
−
2
+
n
f(-1) = -2 + n
f(−1)=−2+n 和
f
(
1
)
=
2
+
n
f(1) = 2 + n
f(1)=2+n 并不是相反的值对
2. 3次函数 f ( x ) = x 3 f(x) = x^3 f(x)=x3
这个也很明显
3. 反比例函数 f ( x ) = x − 1 f(x) = x^{-1} f(x)=x−1
4. 正弦函数 f ( x ) = x − 1 f(x) = x^{-1} f(x)=x−1
这个波浪线也是原点对称的!
偶函数的定义
对于函数f(x), 如果x是在f(x) 的定义内, 如果任意x , 都有f(-x) = f(x) 那么f(x) 是偶函数
数学表达:
f
(
−
x
)
=
f
(
x
)
,
x
∈
D
(
f
)
f(-x) = f(x), x \in D(f)
f(−x)=f(x),x∈D(f)
在函数图像里, 偶函数都是对于y轴对称
偶函数的例子
1. 2次函数 f ( x ) = x 2 f(x) = x^2 f(x)=x2
注意的是
f
(
x
)
=
x
2
+
n
,
n
≠
0
f(x) = x^2 + n, n \neq 0
f(x)=x2+n,n=0 仍然是偶函数, 因为函数图像上下移动一段距离仍然对于y轴对称
但是
f
(
x
)
=
(
x
+
n
)
2
,
n
≠
0
f(x) = (x+n)^2, n \neq 0
f(x)=(x+n)2,n=0 就不是偶函数了,左右移动不行
2. 绝对值函数 f ( x ) = ∣ x ∣ f(x) = |x| f(x)=∣x∣
3. 余弦函数 f ( x ) = cos ( x ) f(x) = \cos(x) f(x)=cos(x)
f ( x ) = cos ( x ) = sin ( x + 2 π ) f(x) = \cos(x) = \sin(x +\frac{2}{\pi}) f(x)=cos(x)=sin(x+π2)
也就将, 正弦函数的图像向左移动半个身位( 2 π \frac{2}{\pi} π2) , 就由原点对称变成y轴对称, 由奇函数变成偶函数, 由正弦函数变成余弦函数了。