杭电1869-六度分离(最短路径,dijkstra,spfa,floyd)

六度分离

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 6529    Accepted Submission(s): 2636


Problem Description
1967年,美国著名的社会学家斯坦利·米尔格兰姆提出了一个名为“小世界现象(small world phenomenon)”的著名假说,大意是说,任何2个素不相识的人中间最多只隔着6个人,即只用6个人就可以将他们联系在一起,因此他的理论也被称为“六度分离”理论(six degrees of separation)。虽然米尔格兰姆的理论屡屡应验,一直也有很多社会学家对其兴趣浓厚,但是在30多年的时间里,它从来就没有得到过严谨的证明,只是一种带有传奇色彩的假说而已。 

Lele对这个理论相当有兴趣,于是,他在HDU里对N个人展开了调查。他已经得到了他们之间的相识关系,现在就请你帮他验证一下“六度分离”是否成立吧。
 

Input
本题目包含多组测试,请处理到文件结束。
对于每组测试,第一行包含两个整数N,M(0<N<100,0<M<200),分别代表HDU里的人数(这些人分别编成0~N-1号),以及他们之间的关系。
接下来有M行,每行两个整数A,B(0<=A,B<N)表示HDU里编号为A和编号B的人互相认识。
除了这M组关系,其他任意两人之间均不相识。
 

Output
对于每组测试,如果数据符合“六度分离”理论就在一行里输出"Yes",否则输出"No"。
 

Sample Input
  
  
8 7 0 1 1 2 2 3 3 4 4 5 5 6 6 7 8 8 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 0
 

Sample Output
  
  
Yes Yes
 

Author
linle
 

Source



这个题大意就是很多人中,两两之间之间的关系链长度不会超过7!


理解题意后就是一个最短路径问题了!

三种方法果断送上:


dijkstra:


#include<cstdio>
#include<cstring>
#include<algorithm>
#define INF 0x3f3f3f3f
using namespace std;
int map[110][110],dis[110],vis[110];
int m,n;
void dijkstra(int x)
{
	memset(vis,0,sizeof(vis));
	int i,j;
	for(i=0;i<m;i++)
	dis[i]=map[x][i];
	
	dis[x]=0;
	vis[x]=1;
	for(i=0;i<m;i++)
	{
		int mark=-1,mi=INF;
		for(j=0;j<m;j++)
		{
			if(!vis[j]&&dis[j]<mi)
			{
				mi=dis[j];
				mark=j;
			}
		}
			if(mark==-1||mi>7)
			break;
			vis[mark]=1;
			for(j=0;j<m;j++)
			{
				if(!vis[j]&&dis[j]>dis[mark]+map[mark][j])
				dis[j]=dis[mark]+map[mark][j];
			}
		
	}
} 
int main()
{
	int i,j,a,b,flag;
	while(scanf("%d%d",&m,&n)!=EOF)
	{
		memset(map,INF,sizeof(map));
		for(i=0;i<n;i++)
		{
			scanf("%d%d",&a,&b);
			map[a][b]=map[b][a]=1;
		}
		flag=0;
		for(i=0;i<m;i++)
		{
			dijkstra(i);
			for(j=0;j<m;j++)
			if(dis[j]>7)
			{
				flag=1;
				break;
			}
			if(flag)
			break;
		}
		if(flag)
		printf("No\n");
		else
		printf("Yes\n");
	}
}



spfa:



#include<cstdio>
#include<cstring>
#include<algorithm>
#define INF 0x3f3f3f3f
#include<queue>
using namespace std;
int head[110],dis[110],vis[110];
int m,n,t;
struct node 
{
	int u,v,w,next;
}s[300];
void spfa(int x)
{
	memset(vis,0,sizeof(vis));
	memset(dis,INF,sizeof(dis));
	dis[x]=0;
	queue<int> q;
	q.push(x);
	while(!q.empty())
	{
		int u=q.front();
		q.pop();
		vis[u]=0;
		for(int k=head[u];k!=-1;k=s[k].next)
		{
			int v=s[k].v;
			if(dis[v]>dis[u]+s[k].w)
			{
				dis[v]=dis[u]+s[k].w;
				if(!vis[v])
				{
					vis[v]=1;
					q.push(v);
				}
			}
		}
	}
} 
void addedge(int x,int y,int w)
{
	s[t].u=x;
	s[t].v=y;
	s[t].w=1;
	s[t].next=head[x];
	head[x]=t++;
}
int main()
{
	int i,j,a,b,flag;
	while(scanf("%d%d",&m,&n)!=EOF)
	{
		memset(head,-1,sizeof(head));
		t=0;
		for(i=0;i<n;i++)
		{
			scanf("%d%d",&a,&b);
			addedge(a,b,1);//注意双向建图
			addedge(b,a,1);
		}
		flag=0;
		for(i=0;i<m;i++)
		{
			spfa(i);
			for(j=0;j<m;j++)
			if(dis[j]>7)
			{
				flag=1;
				break;
			}
			if(flag)
			break;
		}
		if(flag)
		printf("No\n");
		else
		printf("Yes\n");
	}
}



floyd:


#include<cstdio>
#include<cstring>
#include<algorithm>
#define INF 0x3f3f3f3f
using namespace std;
int map[110][110];
int m,n;
void floyd()
{
	int i,j,k;
	for(k=0;k<m;k++)
	{
		for(i=0;i<m;i++)
		{
			if(map[i][k]==INF)
			continue;//这里优化后,时间减少一半
			for(j=0;j<m;j++)
			{
				map[i][j]=min(map[i][k]+map[k][j],map[i][j]);
			}
		}
	}	
}

int main()
{
	int i,j,a,b;
	while(scanf("%d%d",&m,&n)!=EOF)
	{
		memset(map,INF,sizeof(map));
		for(i=0;i<n;i++)
		{
			scanf("%d%d",&a,&b);
			map[a][b]=map[b][a]=1;
		}
		floyd();
		int flag=0;
		for(i=0;i<m;i++)
		{
			for(j=0;j<m;j++)
			{
				if(map[i][j]>7)
				flag=1;
			}
			if(flag)
			break;
		}
		if(flag)
		printf("No\n");
		else
		printf("Yes\n");
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值