量表评估和咨询有一定的主观性,还是表情、语言、关键词句式、医学图像检测更客观。想做个能投入使用的东西。先定个小目标,跑起一个开源代码吧!
下面是一些简单的笔记整理,用于后续研究:
开源代码和数据集
python实现基于EEG的抑郁症诊断模型(SSPA-GCN)、
RHMCD-20 数据集,我们注意包含来自广泛来源的信息,包括来自孟加拉国的青少年、大学生、家庭主妇、企业和公司的专业人士以及其他人。这是抑郁症和心理健康数据分析的调查数据。
- 心理测量:交互进化计算(IEC)作为一种人工智能算法,在心理测量领域得到应用。例如,日本学者塔卡西等人将其应用于精神分裂症患者的心理测量和评估中,辅助验证相关假设。
-
心理变量预测:人工智能中的表情识别技术被用于心理学人格预测的研究。例如,加夫里列斯库在2016年建立了一种系统,可以根据面部动作编码获得的面部特征来确定人的大五人格特征。
-
心理症状识别与诊断:神经网络技术被用于开发儿童心理障碍诊断系统,能够诊断95%以上的儿童心理障碍,并提出处理意见。此外,表情识别技术和声音检测技术也被用于辅助诊断抑郁症等心理症状。
-
情绪识别与心理健康评估:深度学习技术利用计算机视觉、自然语言处理等技术,从语音、面部表情、文本等多源数据中提取情绪和心理状态的客观特征,实现更加精准和可量化的分析。
-
心理健康促进策略:深度学习不仅作为一种技术手段