数据结构之压缩矩阵

代码如下:

#include <stdio.h>
#include <malloc.h>

typedef int elem;

/**
 * A triple for row index, column index, and data.
 */
typedef struct Triple{
    int i;
    int j;
    elem e;
} Triple, *TriplePtr;

/**
 * A triple for row index, column index, and data.
 */
typedef struct CompressedMatrix{
    int rows,columns,numElements;
    Triple* elements;
} CompressedMatrix, *CompressedMatrixPtr;

/**
 * Initialize a compressed matrix.
 */
CompressedMatrixPtr initCompressedMatrix(int paraRows, int paraColumns, int paraElements, int** paraData){
	int i;
	CompressedMatrixPtr resultPtr = (CompressedMatrixPtr)malloc(sizeof(struct CompressedMatrix));
	resultPtr->rows = paraRows;
	resultPtr->columns = paraColumns;
	resultPtr->numElements = paraElements;
	resultPtr->elements = (TriplePtr)malloc(paraElements * sizeof(struct Triple));

	for(i = 0; i < paraElements; i ++){
		resultPtr->elements[i].i = paraData[i][0];
		resultPtr->elements[i].j = paraData[i][1];
		resultPtr->elements[i].e = paraData[i][2];
	}//Of for i

	return resultPtr;
}// Of initCompressedMatrix

/**
 * Print the compressed matrix.
 */
void printCompressedMatrix(CompressedMatrixPtr paraPtr){
	int i;
	for(i = 0; i < paraPtr->numElements; i ++){
		printf("(%d, %d): %d\r\n", paraPtr->elements[i].i, paraPtr->elements[i].j, paraPtr->elements[i].e);
	}//Of for i
}// Of printCompressedMatrix

/**
 * Transpose a compressed matrix.
 */
CompressedMatrixPtr transposeCompressedMatrix(CompressedMatrixPtr paraPtr){
	//Step 1. Allocate space.
	int i, tempColumn, tempPosition;
	int *tempColumnCounts = (int*)malloc(paraPtr->columns * sizeof(int));
	int *tempOffsets = (int*)malloc(paraPtr->columns * sizeof(int));
	for(i = 0; i < paraPtr->columns; i ++){
		tempColumnCounts[i] = 0;
	}//Of for i

	CompressedMatrixPtr resultPtr = (CompressedMatrixPtr)malloc(sizeof(struct CompressedMatrix));
	resultPtr->rows = paraPtr->columns;
	resultPtr->columns = paraPtr->rows;
	resultPtr->numElements = paraPtr->numElements;

	resultPtr->elements = (TriplePtr)malloc(paraPtr->numElements * sizeof(struct Triple));
	
	//Step 2. One scan to calculate offsets.
	for(i = 0; i < paraPtr->numElements; i ++) {
		tempColumnCounts[paraPtr->elements[i].j] ++;
	}//Of for i
	tempOffsets[0] = 0;
	for(i = 1; i < paraPtr->columns; i ++){
		tempOffsets[i] = tempOffsets[i - 1] + tempColumnCounts[i - 1];
		printf("tempOffsets[%d] = %d \r\n", i, tempOffsets[i]);
	}//Of for i

	//Step 3. Another scan to fill data.
	for(i = 0; i < paraPtr->numElements; i ++) {
		tempColumn = paraPtr->elements[i].j;
		tempPosition = tempOffsets[tempColumn];
		resultPtr->elements[tempPosition].i = paraPtr->elements[i].j;
		resultPtr->elements[tempPosition].j = paraPtr->elements[i].i;
		resultPtr->elements[tempPosition].e = paraPtr->elements[i].e;

		tempOffsets[tempColumn]++;
	}//Of for i

	return resultPtr;
}//Of transposeCompressedMatrix

/**
 * Test the compressed matrix.
 */
void compressedMatrixTest(){
	CompressedMatrixPtr tempPtr1, tempPtr2;
	int i, j, tempElements;

	//Construct the first sample matrix.
	tempElements = 4;
	int** tempMatrix1 = (int**)malloc(tempElements * sizeof(int*));
	for(i = 0; i < tempElements; i ++){
		tempMatrix1[i] = (int*)malloc(3 * sizeof(int));
	}//Of for i

	int tempMatrix2[4][3] = {{0, 0, 2}, {0, 2, 3}, {2, 0, 5}, {2, 1, 6}};
	for(i = 0; i < tempElements; i ++){
		for(j = 0; j < 3; j ++) {
			tempMatrix1[i][j] = tempMatrix2[i][j];
		}//Of for j
	}//Of for i
	
	tempPtr1 = initCompressedMatrix(2, 3, 4, tempMatrix1);

	printf("After initialization.\r\n");
	printCompressedMatrix(tempPtr1);

	tempPtr2 = transposeCompressedMatrix(tempPtr1);
	printf("After transpose.\r\n");
	printCompressedMatrix(tempPtr2);
}// Of main

/**
 * The entrance.
 */
int main(){
	compressedMatrixTest();

	return 1;
}// Of main

运行结果:在这里插入图片描述
学习总结:
在学习压缩矩阵的时候,我深刻意识到了空间和时间效率对于算法设计的重要性。矩阵通常是非常庞大的数据结构,如果不采用压缩算法就会占据非常大的存储空间,而这在内存资源有限的设备上会导致程序崩溃和缓慢的运行速度。
在了解每种算法的优缺点后,选择一个恰当的压缩矩阵算法就能极大地减少存储空间和内存使用,使程序更加高效运行。
同时,学习压缩矩阵算法还让我深入了解了数组和链表这两种数据结构,以及它们如何在压缩矩阵算法中发挥作用。
总之,学习压缩矩阵算法使我对数据结构和算法更加深入理解,同时也让我更加懂得如何运用算法实现高效的数据存储和处理。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值