基本代码讲解

1. 引用不能指向另一个对象

在Java中,对象是基于类定义创建的实例。每个对象都有自己的状态(属性)和行为(方法)。当我们在代码中创建一个对象时,我们通常会使用一个引用变量来持有这个对象的内存地址,从而可以通过这个引用变量来操作对象。

当一个引用变量被声明为final时,这意味着这个引用变量在初始化后就不能再指向另一个对象。换句话说,这个引用变量的值,也就是它持有的内存地址,将不可更改。但这并不意味着对象本身是不可变的。对象的状态(它的属性)仍然可以被修改,除非这些属性本身也被声明为final

final List<String> myList = new ArrayList<>();

在这里,myList是一个引用变量,它被初始化为指向一个新创建的ArrayList对象。由于myList被声明为final,我们不能再让myList指向另一个List对象,如下所示是不允许的:

myList = new LinkedList<>(); // 编译错误,因为myList是final的

但是,我们可以修改myList引用的ArrayList对象的内容,例如添加、删除或修改列表中的元素:

myList.add("Hello");

myList.remove("Hello");

在这种情况下,“对象”指的是myList引用所指向的ArrayList实例,而“引用”则是myList变量本身。所以,当我们说“引用不能再指向另一个对象”时,我们是在说myList不能被重新赋值以指向另一个不同的List实例。

2.一个成员变量

private final Map<Integer, Processor<PriceContext>> sceneHandlerMap = Maps.newConcurrentMap();
  • private:一个访问修饰符,表示这个成员变量只能在当前类的内部访问,对外部类和子类都不可见。

  • final:这个关键字表示一旦sceneHandlerMap被初始化之后,其引用不能再指向另一个对象。换句话说,这个变量的引用是不可变的,但是Map本身的内容是可以修改的。

  • Map<Integer, Processor<PriceContext>>:这是声明了一个Map接口,它的键(Key)是Integer类型,而值(Value)是Processor<PriceContext>类型。Processor<PriceContext>是一种泛型接口,其泛型参数是PriceContext类型。

  • sceneHandlerMap:这是这个Map类型变量的名称。

  • Maps.newConcurrentMap():这是调用Google Guava库中的Maps工具类的newConcurrentMap方法,它创建了一个新的线程安全的ConcurrentMap实例。ConcurrentMapMap的一个子接口,它提供了一些原子操作,使得多个线程可以安全地并发访问和修改Map。

综合来看,这行代码的意思是:在当前类中声明了一个私有的、不可变引用的、线程安全的Map,键是整数类型,值是处理PriceContext类型参数的Processor对象。这个Map被用于存储和管理不同场景下的处理器(Processor),这些处理器可能对应不同的业务逻辑。

  • 11
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
深度学习的基本代码可以分为以下几部分: 1. 数据准备:首先需要准备训练集和测试集的数据。数据可以来自于各种来源,例如图像、文本、语音等,需要进行预处理和标准化,确保数据的质量和一致性。 2. 模型构建:选择适合任务的模型架构,并进行模型的构建。常见的深度学习模型包括卷积神经网络(CNN)、循环神经网络(RNN)、生成对抗网络(GAN)等。 3. 模型训练:使用训练集对模型进行训练,调整模型参数,使其能够更好地拟合数据。训练过程中需要设置优化器、损失函数、学习率等参数。 4. 模型评估:使用测试集对训练好的模型进行评估,得到模型的准确率、精度、召回率等指标。评估结果可以用于调整模型参数,进一步提高模型性能。 下面是一个简单的示例代码,使用Keras构建一个简单的CNN模型,对MNIST手写数字数据集进行识别: ```python import numpy as np import keras from keras.datasets import mnist from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D # 加载数据集 (x_train, y_train), (x_test, y_test) = mnist.load_data() # 将数据预处理为四维张量 x_train = x_train.reshape(x_train.shape[0], 28, 28, 1) x_test = x_test.reshape(x_test.shape[0], 28, 28, 1) input_shape = (28, 28, 1) # 将像素值标准化到0-1之间 x_train = x_train.astype('float32') / 255 x_test = x_test.astype('float32') / 255 # 将标签转换成one-hot编码 y_train = keras.utils.to_categorical(y_train, 10) y_test = keras.utils.to_categorical(y_test, 10) # 构建模型 model = Sequential() model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape)) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax')) # 编译模型 model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy']) # 训练模型 model.fit(x_train, y_train, batch_size=128, epochs=10, verbose=1, validation_data=(x_test, y_test)) # 评估模型 score = model.evaluate(x_test, y_test, verbose=0) print('Test loss:', score[0]) print('Test accuracy:', score[1]) ``` 这段代码中,首先使用Keras加载MNIST数据集。然后对数据进行预处理,将图像像素值标准化到0-1之间,并将标签转换成one-hot编码。接着构建了一个简单的CNN模型,包含两个卷积层、池化层和全连接层。最后编译模型,使用Adadelta优化器和交叉熵损失函数进行训练。训练完成后,使用测试集对模型进行评估,输出模型的准确率和损失值。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值