【笔记】What does torch.Size([0]) means? :空向量,shape为 ([0]) ;空数组,shape为([ ])

注:空向量,shape为 ([0]) ;空数组,shape为([ ]) 。

附:

 

### Frame类代码解析 以下是关于`Frame`类的详细解析,假设它是一个基于PyTorch框架设计的类,并可能与LiDAR或视觉重定位相关联。 #### 1. 基本定义 `Frame`类通常用于表示单个时间步长内的传感器数据(例如图像、深度图或其他特征)。此类的设计目的是封装每一帧的数据及其元信息,以便于后续处理和计算。根据引用中的描述[^1],可以推测此`Frame`类可能是为了存储结构化地图的一部分信息而创建的。 #### 2. 属性说明 以下是一些常见的属性以及它们的作用: - **image**: 存储当前帧的RGB图像数据,通常是张量形式 `torch.Tensor`。 ```python self.image = image_tensor # shape (C, H, W), C=channels, H=height, W=width ``` - **depth_map**: 表示当前帧的深度图,也是张量形式 `torch.Tensor`。 ```python self.depth_map = depth_tensor # shape (H, W) ``` - **pose**: 当前帧的姿态矩阵,一般为4x4变换矩阵 `torch.Tensor`。 ```python self.pose = pose_matrix # shape (4, 4) ``` - **intrinsics**: 相机内参矩阵,形状为 `(3, 3)` 的张量。 ```python self.intrinsics = intrinsics_matrix # shape (3, 3) ``` - **features**: 提取的关键点或局部特征向量集合。 ```python self.features = feature_vectors # shape (N, D), N=number of features, D=feature dimension ``` #### 3. 方法功能 下面列举了一些常用方法的功能解释: - **__init__(self, ...)**: 构造函数,初始化上述提到的各种属性。 ```python class Frame: def __init__(self, image, depth_map, pose, intrinsics, features=None): self.image = image self.depth_map = depth_map self.pose = pose self.intrinsics = intrinsics self.features = features if features is not None else [] ``` - **transform_to_world(self)**: 将本地坐标系下的点转换到全局世界坐标系下。 ```python def transform_to_world(self, points_local): return torch.matmul(self.pose[:3, :3], points_local.T).T + self.pose[:3, 3] ``` - **compute_features(self)**: 计算并提取当前帧的特征。 ```python def compute_features(self, model): with torch.no_grad(): self.features = model.extract_features(self.image.unsqueeze(0)) ``` #### 4. 使用场景 该类的主要用途在于支持多模态感知任务,比如SLAM(Simultaneous Localization and Mapping)、重定位(Re-localization)等。通过将每帧的信息标准化存入对象中,便于算法模块间传递和操作。 --- ### 示例代码片段 以下展示了一个简单的`Frame`类实现: ```python import torch class Frame: def __init__(self, image, depth_map, pose, intrinsics, features=None): """ 初始化一帧的所有必要参数 参数: - image: 图像张量 (C,H,W),dtype=torch.float32 - depth_map: 深度图张量 (H,W),dtype=torch.float32 - pose: 姿态矩阵 (4,4),dtype=torch.float32 - intrinsics: 内参矩阵 (3,3),dtype=torch.float32 - features: 可选,特征向量列表,默认为 """ assert isinstance(image, torch.Tensor) and image.ndim == 3, "Image must be a tensor of shape (C,H,W)" assert isinstance(depth_map, torch.Tensor) and depth_map.ndim == 2, "Depth map must be a tensor of shape (H,W)" assert isinstance(pose, torch.Tensor) and pose.shape == (4, 4), "Pose must be a tensor of shape (4,4)" assert isinstance(intrinsics, torch.Tensor) and intrinsics.shape == (3, 3), "Intrinsics must be a tensor of shape (3,3)" self.image = image self.depth_map = depth_map self.pose = pose self.intrinsics = intrinsics self.features = features if features is not None else [] def transform_to_world(self, points_local): """将局部坐标系下的点云转换至全局坐标""" ones = torch.ones((points_local.size(0), 1)).to(points_local.device) homogeneous_points = torch.cat([points_local, ones], dim=-1) world_coords = torch.matmul(homogeneous_points, self.pose.t()) return world_coords[:, :3] # 创建实例 frame_example = Frame( image=torch.rand(3, 256, 256), depth_map=torch.rand(256, 256), pose=torch.eye(4), intrinsics=torch.tensor([[500., 0., 128.], [0., 500., 128.], [0., 0., 1.]]) ) print(frame_example.transform_to_world(torch.tensor([[0., 0., 0.]]))) ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序猿的探索之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值