步骤一 准备好你的C代码
首先,你写好你的C函数。
接下来你可以找到一个模块的forward和backward函数的实现,其主要实现输入相加的功能。
在你的.c文件中,你可以使用#include <TH/TH.h>和#include <THC/THC.h>指令来分别包含TH及THC。
ffi工具可以确保编译器在build的过程中找到它们。
/* src/my_lib.c */
#include <TH/TH.h>
int my_lib_add_forward(THFloatTensor *input1, THFloatTensor *input2,
THFloatTensor *output)
{
if (!THFloatTensor_isSameSizeAs(input1, input2))
return 0;
THFloatTensor_resizeAs(output, input1);
THFloatTensor_cadd(output, input1, 1.0, input2);
return 1;
}
int my_lib_add_backward(THFloatTensor *grad_output, THFloatTensor *grad_input)
{
THFloatTensor_resizeAs(grad_input, grad_output);
THFloatTensor_fill(grad_input, 1);
return 1;
}
代码中没有约束条件。如果想要添加约束条件,你得准备一个header文件,它包含了所有希望在python中调用的函数的列表。
然后它会被ffi工具用来生成适当的封装。
/* src/my_lib.h */
int my_lib_add_forward(THFloatTensor *input1, THFloatTensor *input2, THFloatTensor *output);
int my_lib_add_backward(THFloatTensor *grad_output, THFloatTensor *grad_input);
现在,你需要一个简短的文件来生成(build)你的自定义扩展:
# build.py
from torch.utils.ffi import create_extension
ffi = create_extension(
name='_ext.my_lib',
headers='src/my_lib.h',
sources=['src/my_lib.c'],
with_cuda=False
)
ffi.build()
步骤二 将它包含到你的Python代码中
当你运行完上述指令后,pytorch会创建一个_ext目录,然后将你的my_lib库放进去。
包名可以在最终的模块名前面有任意数量的包(数量也可以等于0).如果build成功,你可以像导入常规的python文件一样导入你的扩展。
定义新的函数:
# functions/add.py
import torch
from torch.autograd import Function
from _ext import my_lib
class MyAddFunction(Function):
def forward(self, input1, input2):
output = torch.FloatTensor()
my_lib.my_lib_add_forward(input1, input2, output)
return output
def backward(self, grad_output):
grad_input = torch.FloatTensor()
my_lib.my_lib_add_backward(grad_output, grad_input)
return grad_input
定义新的模块:
# modules/add.py
from torch.nn import Module
from functions.add import MyAddFunction
class MyAddModule(Module):
def forward(self, input1, input2):
return MyAddFunction()(input1, input2)
在模块中实现嵌套:
# main.py
import torch
import torch.nn as nn
from torch.autograd import Variable
from modules.add import MyAddModule
class MyNetwork(nn.Module):
def __init__(self):
super(MyNetwork, self).__init__()
self.add = MyAddModule()
def forward(self, input1, input2):
return self.add(input1, input2)
model = MyNetwork()
input1, input2 = Variable(torch.randn(5, 5)), Variable(torch.randn(5, 5))
print(model(input1, input2))
print(input1 + input2)