【笔记】BCE Loss:Binary Cross Entropy

本文通过实例对比,探讨了PyTorch中BCELoss和BCEWithLogitsLoss在二元交叉熵损失计算上的异同,帮助理解两者在实际应用中的选择和优化技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

注:

对数函数图像:

资料1:

代码示例

下面为一个简单的示例:

import torch
import random
from torch import nn

random.seed(0)
torch.manual_seed(0)
input = torch.randn(3, 3)
out = torch.sigmoid(input)
target = torch.FloatTensor([[0, 1, 1],
                            [0, 0, 1],
                            [1, 0, 1]])
l1 = nn.BCELoss()
loss1 = l1(out, target) 
print(loss1)  # tensor(1.1805)

input2 = torch.FloatTensor([[1.5410, -0.2934, -2.1788],
                            [0.5684, -1.0845, -1.3986],
                            [0.4033,  0.8380, -0.7193]])
l2 = nn.BCEWithLogitsLoss()
loss2 = l2(input2, target)
print(loss2)  # tensor(1.1805)
# 可以发现loss1和loss2相等

资料2:

资料2:

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值