自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Muti-Agent

CSDN博客专家,华为云享专家,HDZ核心组成员,Linux中国翻译组成员,ACM退役选手,分享 Linux、C/C++、云计算、物联网、Go、算法编程和面试经验,与大家一起成长,把握青春、不负韶华!

  • 博客(626)
  • 资源 (6)
  • 问答 (1)
  • 收藏
  • 关注

原创 【C 语言考试真题】详解(一)

甄选「C 语言考试真题」,详细讲解每一题!

2022-11-10 10:09:54 4390 16

原创 【数据结构和算法】图论—克鲁斯卡尔(Kruskal)算法详解

CSDN博客专家🏆,华为云享专家🏆,Linux、C/C++、云计算、物联网、面试、刷题、算法尽管咨询我,关注我,有问题私聊!

2022-10-24 07:35:02 2499 7

原创 【数据结构和算法】图的概念都在这里了,讲的明明白白

CSDN博客专家,华为云享专家,Linux、C/C++、云计算、物联网、面试、刷题、算法尽管咨询我,关注我,有问题私聊!

2022-02-10 07:15:47 6444 19

原创 华为云IoT提出万物互联新范式,从万物感知到万物生长

万物互联,不仅仅是对物的感知,更重要的是让万物融入到智能世界。华为云IoT,以云为基础,从物的泛在联接、物的场景化孪生、物的智能协同三个维度,提出万物互联新范式,让万物生于端而长于云,将万物带入整个智能世界中。从物联网字面意思看,就是要解决“物”的联接,华为云IoT基于60余种行业接入协议,沉淀出工业、交通、水利、环保等多种细分行业的设备协议库,同时以10种以上的接入模式,灵活适配行业场景中多源异构的接入诉求。此外,端边云协同的分布式级联架构,让设备在作业现场就近接入,同...

2021-12-13 12:04:08 7050 20

原创 我的Go+语言初体验——Go+简单应用—选择排序

作者:Linux猿简介:CSDN博客专家????,华为云享专家????,Linux、C/C++、面试、刷题、算法尽管咨询我,关注我,有问题私聊!

2021-12-04 09:18:56 6710 27

原创 2021爱智先行者—玩转智能边缘计算OS

本文正在参与"2021爱智先行者-征文大赛"活动,活动链接:https://bbs.csdn.net/topics/602601454

2021-11-22 09:17:08 25205 47

原创 千万别再用了,这些加密算法

CSDN博客专家????,华为云享专家????,Linux、C/C++、面试、刷题、算法尽管咨询我,关注我,有问题私聊!

2021-11-19 09:22:19 24044 12

原创 【数据结构和算法】13张图解+实例+实战题目,二叉树存储结构详解

???? 作者:Linux猿???? 简介:CSDN博客专家????,华为云享专家????,Linux、C/C++、面试、刷题、算法尽管咨询我,关注我,有问题私聊!???? 关注专栏: 动图讲解数据结构和算法(优质好文持续更新中……)???????? 欢迎小伙伴们点赞????、收藏⭐、留言????一、顺序存储结构二、链式存储结构2.1左右孩子法2.2 左孩子右兄弟法三、总结...

2021-11-15 06:55:32 18311 44

原创 【数据结构和算法】超详细,超多图解,赫夫曼树详解

???? 作者:Linux猿???? 简介:CSDN博客专家????,华为云享专家????,Linux、C/C++、面试、刷题、算法尽管咨询我,关注我,有问题私聊!???? 关注专栏:动图讲解数据结构和算法(优质好文持续更新中……)???????? 欢迎小伙伴们点赞????、收藏⭐、留言????赫夫曼树是在考试、考研、面试中经常提到的一个知识点,下面就让我们一块来看下赫夫曼树及其应用吧!一、什么是赫夫曼树 ?在说赫夫曼树之前,一定要先了解一个概念“带权路径长度”,简称WPL。二、

2021-11-10 07:11:16 11950 27

原创 【数据结构和算法】超详细,超多图解,树的各种概念汇总

???? 作者:Linux猿???? 简介:CSDN博客专家????,华为云享专家????,Linux、C/C++、面试、刷题、算法尽管咨询我,关注我,有问题私聊!???? 关注专栏:动图讲解数据结构和算法(优质好文持续更新中……)???????? 欢迎小伙伴们点赞????、收藏⭐、留言????本文带大家学习一个树中的知识点—树的带权路径长度,它经常出现在赫夫曼树中,下一篇文章会介绍赫夫曼树!一、树的几个概念在学习树的带权路径长度之前,先来看几个必备的概念。1.1 分支分支是

2021-11-05 07:03:08 33555 45

原创 【数据结构和算法】衡量算法的标尺,时间和空间复杂度详解

???? 作者:Linux猿???? 简介:CSDN博客专家????,华为云享专家????,Linux、C/C++、面试、刷题、算法尽管咨询我,关注我,有问题私聊!???? 关注专栏:动图讲解数据结构和算法(优质好文持续更新中……)???????? 欢迎小伙伴们点赞????、收藏⭐、留言????对于一个问题,存在着许多解题方法,那如何评价方法的优劣呢?通常来说会考虑算法的时间复杂度和空间复杂度。下面就为大家介绍下算法的时间和空间复杂度。????一、什么是时间复杂度 ?咱们先从字面意思

2021-11-01 07:20:06 9657 21

原创 【数据结构和算法】超多图解,超详细,堆详解

???? 作者:Linux猿???? 简介:CSDN博客专家????,华为云享专家????,Linux、C/C++、面试、刷题、算法尽管咨询我,关注我,有问题私聊!???? 关注专栏:图解数据结构和算法(优质好文持续更新中……)???????? 欢迎小伙伴们点赞????、收藏⭐、留言????目录????一、什么是堆????二、堆排序✨2.1 算法原理✨2.2 算法步骤✨2.3 实例演示✨2.4代码实现✨2.5堆调整原理????三、实例讲解✨3.1 求第 k

2021-10-24 10:16:23 50665 60

原创 Windows 终端常用命令,必备!

???? 作者:Linux猿???? 简介:CSDN博客专家????,华为云享专家????,Linux、C/C++、面试、刷题、算法尽管咨询我,关注我,有问题私聊!???? 关注专栏:xxxxxxx (优质好文持续更新中……)???????? 欢迎小伙伴们点赞????、收藏⭐、留言????大家在 Windows 控制台(黑框)中执行命令的时候,是不是经常输错命令呢?经常与 Linux 的命令混淆了,这篇文章就来总结下 Windows 控制台的命令。一、什么是 Windows 控制台W

2021-10-22 06:56:11 25659 9

原创 【数据结构和算法】二叉树详解,动图+实例

???? 作者:Linux猿???? 简介:CSDN博客专家????,华为云享专家????,Linux、C/C++、面试、刷题、算法尽管咨询我,关注我,有问题私聊!???? 关注专栏:图解数据结构和算法(优质好文持续更新中……)???????? 欢迎小伙伴们点赞????、收藏⭐、留言????【数据结构和算法】超详细,保姆级,动图详解,就怕你不会,二叉树详解一、什么是二叉树二、二叉树遍历2.1 前序遍历2.2 中序遍历2.3 后续遍历2.4 层次遍历三、二叉

2021-10-20 06:47:54 11287 28

原创 【数据结构和算法】动图演示,超详细,就怕你不会,二分查找详解

【数据结构和算法】动图演示,保姆级,二分查找算法,就怕你不会!???? 作者:Linux猿???? 简介:CSDN博客专家????,华为云享专家????,C/C++、面试、刷题、算法尽管咨询我,关注我,有问题私聊!???? 关注专栏:C/C++面试通关集锦(优质好文持续更新中……)???????? 欢迎小伙伴们点赞????、收藏⭐、留言????在算法的学习中,二分查找算法是一个经常使用到的算法,下面就来讲解下。一、什么是二分查找算法 ?二、二分查找算法讲解三、实例讲解

2021-10-13 06:40:26 13647 60

原创 【超简单,保姆级】❤️Linux 安装 Windows 软件,微信、QQ、TIM等,再也不用来回切换了!❤️【建议收藏】

Linux 安装微信,QQ,等

2021-10-05 11:12:03 63346 81

原创 ❤️【动图分析】Top 10 数据库,近 10 年排名❤️

???? 作者:Linux猿???? 简介:CSDN博客专家????,华为云享专家????,C/C++、面试、刷题、算法尽管咨询我,关注我,有问题私聊!???? 关注专栏:Linux 技术(优质好文持续更新中……)???????? 欢迎小伙伴们点赞????、收藏⭐、留言????本文根据 DB-Engines 网站的历年数据库的排名数据,制作成了动图,下面整理了数据库10年的变化,一起来看下变化吧!图1 近 10 年 Top 10 数据库排名_____________???? 我

2021-10-02 09:00:00 6246 36

原创 【数据结构和算法】动图+万字,详解栈和队列(实例讲解)

???? 作者:Linux猿???? 简介:CSDN博客专家????,华为云享专家????,C/C++、面试、刷题、算法尽管咨询我,关注我,有问题私聊!???? 关注专栏:C/C++面试通关集锦(优质好文持续更新中……)???????? 欢迎小伙伴们点赞????、收藏⭐、留言????目录一、栈1.1 什么是栈1.2 实现方式1.3 数组实现栈1.3.0 类封装1.3.1 push 操作1.3.2 pop 操作1.3.3 empty 操作1.3.4 top

2021-09-26 07:16:14 8082 47

原创 【数据结构和算法】动图详解,链表(单链表/双链表……)(实例讲解)

???? 作者:Linux猿???? 简介:CSDN博客专家????,华为云享专家????,C/C++、面试、刷题、算法尽管咨询我,关注我,有问题私聊!???? 关注专栏:C/C++面试通关集锦(优质好文持续更新中……)????目录一、单链表1.1 插入节点1.2 删除结点二、双链表2.1 插入节点2.2 删除节点三、单向循环链表3.1 插入节点3.2 删除结点四、双向循环链表4.1 插入节点4.2 删除节点五、静态链表六、实战讲解6.

2021-09-22 07:04:39 18951 71

原创 ❤️动图分析编程语言 16 年变化❤️

???? 作者:Linux猿???? 简介:CSDN博客专家????,C/C++、面试、刷题、算法尽管咨询我,关注我,有问题私聊!???? 关注专栏:Linux 技术(优质好文持续更新中……)????本文根据 TIOBE 网站的历年编程语言的排名数据,制作成了动图,下面整理了编程语言 16 年的变化,一起来看下变化吧!编程语言16 年排名变化一、什么是 TIOBE 指数TIOBE编程社区指数是一种衡量编程语言流行度的标准,由成立于 2000 年 10 月位于荷兰埃因霍温的 TIOB

2021-09-18 07:30:04 6753 58

原创 ❤️保姆级!超详解!远程连接Linux虚拟机!❤️

???? 作者:Linux猿???? 简介:CSDN博客专家????,C/C++、面试、刷题、算法尽管咨询我,关注我,有问题私聊!???? 关注专栏:Linux 技术(优质好文持续更新中……)????本文详细讲解远程连接虚拟机的步骤,考虑到较多人使用Ubuntu 和 CentOS,本文分别针对这两种操作系统进行讲解。实际上,大多数桌面操作系统都是基于 Ubuntu 来的,很多的操作系统是基于 CentOS 的,所以会了这两种操作系统,基本就会了绝大多数的情况了。✨一、Ubuntu??

2021-09-15 07:01:51 25398 72

原创 面向初学者的 STL set 详解,一看就懂!

???? 作者:Linux猿???? 简介:CSDN博客专家????,C/C++、面试、刷题、算法尽管咨询我,关注我,有问题私聊!目录一、什么是 set ?二、set 的定义2.1 头文件2.2 定义2.3 常用方法三、set 方法实例演示3.1 size()、clear()、empty() 方法3.2 begin()、end() 方法3.3 rbegin()、rend() 方法3.4 lower_bound()、upper_bound() 方法3.5 e

2021-09-10 12:59:23 8550 41

原创 一看就懂!保姆级实例详解 STL list 容器【万字整理】

???? 作者:Linux猿???? 简介:CSDN博客专家????,C/C++、面试、刷题、算法尽管咨询我,关注我,有问题私聊!???? 关注专栏:C/C++面试通关集锦(优质好文持续更新中……)????目录一、什么是 list ?二、List 的定义2.1 头文件2.2 定义2.3 常用方法三、实例讲解3.1 size()、clear()、empty() 方法3.2 push_front()、push_back() 方法3.3 pop_front()、po

2021-09-05 10:28:19 4748 70

原创 最受欢迎的 Linux 怎么是它,Ubuntu 排第六

???? 作者:Linux猿???? 简介:CSDN博客专家????,C/C++、面试、刷题、算法尽管咨询我,关注我,有问题私聊!???? 关注专栏:Linux(优质好文持续更新中……)????不多废话,先来看一下排名:图1 DistroWatch 网站排名上面是排名前 30 位的最受欢迎的 Linux 操作系统,可以看到,比较熟悉的操作系统也名列前茅,比如:Ubuntu、Debian、Fedora、Arch、CentOS、Ubuntu Kylin以及deepin等。上面的排名是

2021-09-01 07:12:32 415475 251

原创 Linux 30岁了,你知道吗?

???? 作者:Linux猿???? 简介:CSDN博客专家????,C/C++、面试、刷题、算法尽管咨询我,关注我,有问题私聊!???? 关注专栏:Linux(下期有惊喜哦……)????目录一、神一样的人物二、Git 又一个神作三、Linux 吉祥物四、总结开发人员普遍认为的 Linux 生日是在1991年8月25日,现在 Linux 算是满 30 岁了,而 30 年前的这一天 21 岁的 Linus Torvalds (林纳斯·托瓦兹,以下简称托瓦兹)发布了 Linux

2021-08-27 07:00:05 4538 49

原创 Git 开发必备 .gitignore 详解!【建议收藏】

???? 作者:Linux猿???? 简介:CSDN博客专家????,C/C++、面试、刷题、算法尽管咨询我,关注我,有问题私聊!???? 关注专栏:Linux(优质好文持续更新中……)????在使用 git 管理项目过程中,.gitignore 文件是必备的文件,下面来详细说一说!一、为什么使用 .gitignore ?在一些项目中,我们不想让本地仓库的所有文件都上传到远程仓库中,而是有选择的上传,比如:一些依赖文件(node_modules下的依赖)、bin 目录下的文件、测试文件等

2021-08-24 13:05:38 159388 73

原创 零基础都能看懂的 STL map 详解

???? 作者:Linux猿???? 简介:CSDN博客专家????,C/C++、面试、刷题、算法尽管咨询我,关注我,有问题私聊!???? 关注专栏:C/C++面试通关集锦(优质好文持续更新中……)????map 在编程中是经常使用的一个容器,本文来讲解一下 STL 中的 map,赶紧来看下吧!一、什么是 map ?map 是具有唯一键值对的容器,通常使用红黑树实现。map 中的键值对是 key value 的形式,比如:每个身份证号对应一个人名(反过来不成立哦!),其中,身份证号就

2021-08-21 16:48:48 23352 70

原创 【课程设计】 推箱子游戏(源码 + 详解)

【课程设计】 推箱子游戏(源码 + 详解)简介:CSDN博客专家,C/C++、面试、刷题、算法尽管咨询我,关注我,有问题私聊!

2021-08-18 07:06:43 13955 85

原创 一文搞懂内联函数!

???? 作者:Linux猿???? 简介:CSDN博客专家????,C/C++、面试、刷题、算法尽管咨询我,关注我,有问题私聊!???? 关注专栏:C/C++面试通关集锦(优质好文持续更新中……)????目录一、什么是内敛函数?二、为什么要使用内联函数 ?三、哪些函数不能是内联函数?四、使用内联函数的缺点五、总结内敛函数想必大家都很熟悉,适当的使用内敛函数可以提高程序的执行效率。本篇文章就来讲解下内敛函数,赶紧来看下吧!一、什么是内敛函数?内敛函数是在 C++

2021-08-14 11:06:54 20690 43

原创 【课程设计】俄罗斯方块游戏,重温经典(源码 + 详解)

【课程设计】俄罗斯方块游戏,重温经典(源码 + 详解)CSDN博客专家,C/C++、面试、刷题、算法尽管咨询我,关注我,有问题私聊!

2021-08-10 08:49:58 16380 99

原创 野指针?悬空指针? 一文带你搞懂!

???? 作者:Linux猿???? 简介:CSDN博客专家????,C/C++、面试、刷题、算法尽管咨询我,关注我,有问题私聊!???? 关注专栏:C/C++面试通关集锦(优质好文持续更新中……)????目录一、野指针二、悬空指针2.1 情况一2.2 情况二2.3 情况三野指针和悬空指针是指针中常见的两个概念,本文结合实例讲解来讲解下。一、野指针野指针是指尚未初始化的指针,既不指向合法的内存空间,也没有使用 NULL/nullptr 初始化指针。来看一个简单

2021-08-07 10:35:22 18207 66

原创 一文掌握C/C++内存泄漏,防止内存泄漏以及检测工具!

???? 作者:Linux猿???? 简介:CSDN博客专家????,C/C++、面试、刷题、算法尽管咨询我,关注我,有问题私聊!???? 关注专栏:C/C++面试通关集锦(优质好文持续更新中……)????目录一、什么是内存泄漏?二、如何防止内存泄漏?1. 成对出现2. 智能指针三、内存泄漏检测工具1. Valgrind2. PurifyPlus在写 C/C++ 代码的时候,经常需要为程序分配动态内存,难免就会发生内存泄漏的情况,本文就来说一下如何防止 C/C++

2021-08-04 08:23:38 10826 72

原创 【C/C++面试必备】bfs和dfs的区别

???? 作者:Linux猿???? 简介:CSDN博客专家????,C/C++、面试、刷题、算法尽管咨询我,关注我,有问题私聊!???? 关注专栏:C/C++面试通关集锦(优质好文持续更新中……)????目录一、什么是 bfs ?1.1 搜索方式二、什么是 dfs ?2.1 搜索方式三、bfs 和 dfs 的区别3.1数据结构3.2 访问节点的方式3.3 应用大家对 bfs 和 dfs 应该都有了解,都是很常用的搜索算法,本文结合实例来讲解下这两者的不同。

2021-07-30 08:15:44 9656 75

原创 【数据结构和算法】 八大排序算法详解

???? 作者:Linux猿???? 简介:CSDN博客专家????,C/C++、面试、刷题、算法尽管咨询我,关注我,有问题私聊!???? 关注专栏:C/C++面试通关集锦(优质好文持续更新中……)????目录一、冒泡排序1. 算法思想2. 实例演示3. 代码实现4. 算法复杂度二、选择排序1. 算法思想2. 实例演示3. 代码实现4. 算法复杂度三、快速排序1. 算法思想2. 实例演示3. 代码实现4. 算法复杂度四、归并排序

2021-07-27 08:29:11 7571 96

原创 LeetCode 面试必备100题:无重复字符的最长子串 Longest Substring Without Repeating Characters

???? 作者:Linux猿???? 简介:CSDN博客专家????,C/C++、面试、刷题、算法尽管咨询我,关注我,有问题私聊!???? 关注专栏:LeetCode面试必备100题(优质好文持续更新中……)????目录一、题目描述二、测试样例三、解题思路四、代码实现五、算法复杂度六、题目链接一、题目描述给定一个字符串 s ,请你找出其中不含有重复字符的最长子串的长度。提示:1. 0 <= s.length <= 5 * 10^42. s

2021-07-24 08:20:51 2788 15

原创 【C/C++面试必备 | 基础概念】struct和class的区别

???? 作者:Linux猿???? 简介:CSDN博客专家????,C/C++、面试、刷题、算法尽管咨询我,关注我,有问题私聊!???? 关注专栏:C/C++面试通关集锦(优质好文持续更新中……)????绝大多数的人对 struct 和 class 都是很熟悉的,那它们之间有什么区别呢?我想很多人并没有深入的了解过这个,这篇文章就来分析一下!首先,注意本文讨论的是 C++ 中 struct 和 class 的区别,因为 C 中 struct 和 class 的区别已经很明显了!先说下

2021-07-23 08:04:45 13892 108

原创 【C/C++面试必备】volatile 关键字

???? 作者:Linux猿???? 简介:CSDN博客专家????,C/C++、面试、刷题、算法尽管咨询我,关注我,有问题私聊!???? 关注专栏:C/C++面试通关集锦 (优质好文持续更新中……)????本文来讲解一下 C/C++ 中的关键字 volatile。在日常的使用中很少使用到,但是,在面试中经常被提起,下面具体来看一下。volatile 的作用是什么呢?volatile 意思是易变的,是一种类型修饰符,在C/C++中用来阻止编译器因误认某段代码无法被代码本身所改变,而造成的

2021-07-20 07:53:26 8258 105

原创 LeetCode 面试必备100题:Add Two Numbers 两数相加

???? 作者:Linux猿???? 简介:CSDN博客专家????,C/C++、面试、刷题、算法尽管咨询我,关注我,有问题私聊!???? 关注专栏:LeetCode面试必备100题(优质好文持续更新中……)????一、题目描述给你两个非空的链表,表示两个非负的整数。它们每位数字都是按照逆序的方式存储的,并且每个节点只能存储 一位数字。请你将两个数相加,并以相同形式返回一个表示和的链表。你可以假设除了数字 0 之外,这两个数都不会以 0 开头。提示:1. 每个链表中的节点

2021-07-18 12:55:44 3168 11

原创 【C/C++面试必备】声明和定义的区别

???? 作者:Linux猿???? 简介:CSDN博客专家????,C/C++、面试、刷题、算法尽管咨询我,关注我,有问题私聊!???? 关注专栏:C/C++面试通关集锦(优质好文持续更新中……)????目录一、变量的声明和定义1.1声明1.2定义1.3 区分定义和声明二、函数的声明和定义2.1 函数声明2.2 函数定义2.3 函数声明和定义区分三、声明和定义的区别3.1 声明/定义次数3.2 分配内存3.3 做了什么本文来介绍一下声明和定义

2021-07-16 08:04:23 23321 82

原创 【C/C++面试必备】面向对象与面向过程的区别

这篇文章来说下面向对象编程!那什么是面向对象编程呢?是这样?还是这样?当然,都不是!介绍面向对象之前,那必须先说一下面向过程。什么是面向过程呢?面向过程(Procedure-Oriented Programming,简称POP)是一种编程模型,由一系列要执行的计算步骤组成,通常采用自上而下、顺序执行的方式。面向过程的编程语言包括:C、Fortran、Pascal、Basic等。下面来看一个简单的例子:咱们以把大象放进冰箱为例,面向过程的方式分为三步:1..

2021-07-14 07:54:24 9179 106

汽车牌照数据集 YOLO 目标检测

关于数据集 数据集:汽车牌照检测 该数据集包含车牌图像及其对应的YOLO格式标注。它旨在用于训练和评估专注于检测图像中车牌的模型。 数据集概览: 图片总数: 433 张车牌图片 图片格式: .png 标注格式: YOLO(标签,X轴,Y轴,宽度,高度) 图像分辨率:各不相同 标注:车牌的边界框坐标,已归一化到图像尺寸 数据集结构: 数据集分为两个主要目录:训练集和测试集。每个目录包含两个子目录:图像集和标签集。 训练集:包含 346 张图像及其对应的 YOLO 标注文件,用于训练。 测试:包含 87 张图像及相应的 YOLO 标注文件,用于测试。 每个图像文件(例如 Cars0.png)都与一个对应的标注文件(例如 Cars0.txt)配对。标注文件包含以下 YOLO 格式的信息: 标签:对象的类别(对于此数据集,它始终为 0,表示汽车牌照)。 Xc、Yc:边界框的中心坐标,已根据图像的宽度和高度进行归一化。 W、H:边界框的宽度和高度,也已归一化。 文件信息: train/images/: 346 个.png汽车牌照图像文件。 train/labels/: 346 个YOLO.txt格式的标注文件。 test/images/: 87 个.png用于测试的图像文件。 test/labels/: 87 个YOLO.txt格式的标注文件。 data.yaml:包含数据集详细信息的配置文件。 数据集拆分: 训练集: 346 张图像(占总数据集的 80%) 测试集: 87 张图像(占总数据集的 20%) 例如: 车牌号注释的示例可能如下所示: 0 0.548 0.612 0.432 0.075 0:类别标签(车牌始终为 0)。 0.548:X 中心(已归一化为图像宽度)。 0.612:Y

2026-01-11

植物病害图像数据集 YOLO 目标检测

该数据集是对广受认可的PlantVillage数据集的改进版本,针对目标检测任务进行了优化。它包含带有边界框标注的植物叶片图像,便于训练和评估专门用于识别植物病害和健康状况的计算机视觉模型。这一经过丰富和标注的PlantVillage数据集版本,使研究人员和开发人员能够利用广泛且具有代表性的水果和蔬菜类别,提高其目标检测模型的准确性。

2026-01-11

notepad++ 8.6.7

notepad++ 8.6.7

2026-01-11

武器检测数据集 Yolo

本数据集包含9种不同类型武器的图像。此前,一些数据集仅包含“武器”或“枪”这一单一类别。而本数据集目前包含9个类别:Automatic Rifle[此处应Bazooka填写类别名称] 。该数据集借助Python库创建,该库可从互联网下载图像。每个类别收集了100张图像。经过检查,剔除了无效图像,最终保留了所有9个类别共714张图像。

2026-01-11

YOLO车辆数据集 目标检测

该数据集是带标签的车辆图像。 数据集大小: 3000 张图像; 每类: 500 张图像; 格式: YOLO (txt); 训练集/验证集划分: 70% (2100 张图像) : 30% (900 张图像) 类型: 汽车 三轮车 巴士 卡车 摩托车 面包车

2026-01-11

垃圾/废弃物检测数据集

TACO(Trash Annotations in Context,上下文垃圾标注)数据集是一个专为垃圾检测和分类而设计的综合数据集。已针对基于 YOLO 的目标检测模型进行了直接处理。 TACO数据集包含各种不同环境和背景下各类垃圾的高分辨率图像。该数据集涵盖了我们周围环境中常见的各种垃圾类别,使其成为训练环境清理和监测模型的宝贵资源。 根据YOLO数据集标准,本数据集中的每张图像都关联一个相应的标注文件(.txt文件)。这些标注文件包含图像中垃圾的边界框坐标及其所属类别。边界框标注值根据图像大小进行归一化,范围为0到1。 该数据集的主要目标是支持开发稳健、准确的垃圾识别和分类目标检测模型。这有助于为污染和乱扔垃圾等环境问题提供有效的解决方案,并有可能促进自动化清理系统的开发。 虽然数据集没有分成单独的训练集、验证集或测试集,但我们鼓励用户根据模型开发需求进行划分。 使用此数据集时,请遵守原始数据集提供者规定的条款和条件。如果您发现此数据集对您的研究或项目有所帮助,请考虑引用原始出处以示对创建者贡献的认可。

2026-01-11

高通量藻类细胞检测 YOLO 目标检测

1. 简介 VisAlgae 2023 数据集是第二届 “视觉遇见藻类”(VisAlgae)挑战赛的配套数据集,赛事与 IEEE 赛博数学大会同期举办,聚焦藻类研究与计算机视觉技术的跨学科应用,旨在应对高通量微藻细胞检测挑战;数据源于高通量微流控平台实验,在不同视场、成像条件下收集动态视频帧,含 1000 张图像(训练集 700 张、测试集 300 张),覆盖 6 类微藻细胞(扁桃菌、小螺旋体、盐状螺旋体、海藻属、卟啉属、血球菌);细胞尺寸差异显著(含极小目标),存在运动模糊、失焦及复杂背景问题,训练集标注采用 YOLO 格式(.txt 文件),为开发针对性物体检测算法提供数据支撑。 2. 文件类型 图像文件:1000 张微藻细胞显微图像(格式未明确提及,推测为 JPEG/PNG 等常见格式),分训练集(700 张)、测试集(300 张)存储,涵盖不同视场、成像条件下的微藻场景。 标注文件:仅训练集配套 YOLO 格式.txt 标注文件,每一行记录 “Class(类别,0-5 对应 6 类微藻)、x_center(中心 x 坐标)、y_center(中心 y 坐标)、w(宽度)、h(高度)”,明确微藻细胞目标位置与类别信息。 3. 适用方向 适用于高通量微藻细胞检测相关的物体检测算法训练与评估,核心解决小目标检测、多尺度处理、运动模糊消除、复杂背景降噪等问题;可支撑生态学(微藻监测)、环境科学(藻类生态平衡研究)及生物工程(微藻资源开发)领域的技术研发,为显微图像中微小生物目标检测的计算机视觉算法优化提供数据支持,推动跨学科技术在微藻研究中的落地应用。

2026-01-11

闭路电视事件数据集-跌倒与躺倒检测

1. 简介 该数据集是合成数据集,专为俯视 CCTV 场景下的坠落检测、姿态估计和事件监测计算机视觉任务设计;区别于标准目标检测数据集,其含边界盒与 17 个 COCO 标准关键点骨架的双重注释,可支撑模型理解人体姿势并区分站立 / 倒下个体;数据集 95% 样本为倒下状态,适配异常检测模型训练,且完全合成无真实人物,规避 GDPR / 隐私风险,兼容 YOLOv8、YOLO11-Pose 模型。 2. 文件类型 图像文件:存储于images/文件夹,为高质量合成的.jpg/.png格式俯视 CCTV 场景图像。 标注文件:存储于labels/文件夹,为.txt格式文件,遵循 YOLO 姿态格式,包含类 ID、边界框坐标及 17 个关键点信息。 3. 适用方向 适用于俯视 CCTV 场景下的人体坠落检测、姿态估计、异常事件监测算法训练与评估;可支撑安防监控领域的智能预警系统研发,为解决场景内人员跌倒等安全事件的自动识别提供数据支持。

2026-01-11

工业报警监测数据集 人工智能 模型训练

该数据集为高分辨率数据,涵盖 2018 年 1 月至 2024 年 6 月工业环境中的报警事件详细信息,包含严重度、状态、类别、时间戳等属性,适用于预测分析、机器学习和预测类任务。 适用于时间序列分析、异常检测、预测性维护和机器学习项目

2026-01-11

人工智能与计算机视觉数据集

该人工智能与计算机视觉数据集,专为人工智能驱动的手写识别、多语言手语翻译任务设计;包含三类应用相关元数据,分别是带逐步解答的手写数学问题图片元数据、带翻译的多语言街道标志图片元数据、区分正常与可疑活动的监控录像元数据。 适用于机器学习、图像识别、光学字符识别(OCR)、异常检测和人工智能模型训练。

2026-01-11

皮肤病学数据集(多类别分类)

1. 简介 皮肤病学数据集(多类别分类)聚焦皮肤科 “红斑鳞状” 疾病的鉴别诊断,涵盖银屑病、脂溢性皮炎、扁平苔藓、糠疹、慢性皮炎和红毛皮癣 6 类疾病;数据集包含患者首次临床评估的 12 个特征,以及皮肤样本的 22 项组织病理特征,部分特征存在特定标注规则(家族史为二分类、年龄为连续值、其余临床和组织病理特征为 0-3 级评分),Age 属性存在以 “?” 表示的缺失值。 2. 适用方向 适用于 “红斑鳞状” 疾病的多类别分类模型训练与评估,支持属性分布分析、相关分析、缺失值分析、类别分布分析、特征工程、异常值检测等数据探索任务。

2026-01-11

云朵照片数据集 图像分类 YOLO 目标检测

1. 简介 该数据集含 961 张带标签的云摄影图像,按云类型分为 7 个类别,图像存储于对应类别子文件夹中;数据集存在类别不平衡问题,部分类别代表性不足。 2. 文件类型 JPG 格式摄影图像文件。 3. 适用方向 适用于图像分类任务(云类型识别)、训练深度学习模型(CNN)和天气模式分析。

2026-01-10

用于癌症检测的血细胞影像

1. 简介 该血细胞影像数据集专为癌症检测设计,聚焦白血病检测,包含 5000 张标准化条件下捕捉的高分辨率血涂片显微图像;图像重点呈现正常和异常血细胞(含髓鞘母细胞、淋巴母细胞及多种正常细胞),经专家血液病理学家验证,每类细胞对应 1000 张图像,结构化组织且附带详尽文档,支持血癌诊断的研究与临床应用。 2. 文件类型 .jpg 格式的血涂片显微图像文件,包含细胞相关注释文档及技术元数据文档。 3. 适用方向 适用于计算机视觉和医学图像分析领域的细胞分类任务,可支撑正常与异常细胞分化、白血病亚型鉴定、疾病进展监测、早期检测筛查、治疗反应评估等临床应用,以及自动细胞分类、定量特征分析等机器学习相关研究。

2026-01-10

4471只猫 YOLO 数据集

1. 简介 该数据集源自牛津 - IIIT Pet 数据集,是专注于猫类的 YOLO 格式数据集,含 4471 只猫相关图像;原始数据集包含 37 类宠物,改装后移除非猫类数据,将注释转换为 YOLO 格式,按类别分层划分为训练集和验证集,并用 trimaps 生成全身边界框。 2. 文件类型 图像文件:猫类相关图像文件(原始数据集格式未明确标注,推测为常见图像格式)。 标注文件:YOLO 格式标注文件,含全身边界框信息。 3. 适用方向 适用于猫类目标检测模型的训练与评估,适配 YOLO 系列模型,为猫类相关计算机视觉任务提供数据支持。

2026-01-10

救护车数据集 该救护车车辆检测数据集为二分类带标签图像数据集,旨在训练和评估计算机视觉模型,以在真实交通环境中区分救护车与非救护车

1. 简介 该救护车车辆检测数据集为二分类带标签图像数据集,旨在训练和评估计算机视觉模型,以在真实交通环境中区分救护车与非救护车;图像源自多个交通现场,涵盖道路、交叉口、高速公路、城市街道等场景,救护车图像含不同角度、光线、天气及背景变化,非救护车图像包含轿车、卡车等多种普通车辆,且两类图像环境条件相近以避免类别偏见,数据集类别平衡。 2. 文件类型 图像文件按类别分别存储于 “/ 救护车 /”“/ 非救护车 /” 文件夹中,适配 TensorFlow、Keras 等框架直接训练。 3. 适用方向 适用于紧急车辆检测、智能交通管理系统、基于优先级的路由、实时视频监控分析等任务;可支撑救护车检测与追踪、交通信号优先级设置、自动驾驶安全模型研发等实际应用,也可用于 CNN、MobileNet、ResNet、YOLO 等模型的训练与基准测试。

2026-01-10

车辆能源与遥测数据集 该数据集是经过策划管理的大型车辆遥测和能耗数据子集,专为机器学习、数据分析及科研设计,适配能耗预测、驾驶行为分析、时间序列建模、异常检测等任务

1. 简介 该数据集是经过策划管理的大型车辆遥测和能耗数据子集,专为机器学习、数据分析及科研设计,适配能耗预测、驾驶行为分析、时间序列建模、异常检测等任务;数据捕捉车辆高频传感器读数、环境条件及道路相关属性,从原始大型数据集中提取整理出较小子集以简化实验;每条记录为一个遥测快照,含车辆运行、GPS、电池、环境、交通道路等多类特征,目标变量为 “Energy_Consumption”,支持回归预测、能效建模等场景。 2. 文件类型 CSV 格式数据文件,包含丰富的数值型和类别型车辆遥测特征列,行数为适配实际用途的简化子集规模。 3. 适用方向 适用于能耗预测、时间序列建模、驾驶模式分析、特征工程实践,以及基于 scikit-learn、PyTorch、TensorFlow 等工具的机器学习流水线开发;同时可支撑 EV/HEV 分析、能效建模等车辆能源相关研究任务。

2026-01-10

交通标志数据集 该数据集包含 36.8k + 张图像,涵盖 15 类道路交通标志(每类代表特定道路指示或警告)

1. 简介 该数据集包含 36.8k + 张图像,涵盖 15 类道路交通标志(每类代表特定道路指示或警告),为单标签分类数据集(每张图片对应一个类别);数据源自 GTSRB 德国交通标志识别基准、自动驾驶汽车计算机视觉项目、交通标志数据集三个来源,其中 GTSRB 曾是 2011 年国际神经网络联合会议(IJCNN)的多类别、单图像分类挑战赛数据集。 2. 文件类型 道路交通标志图像文件,含对应类别标签信息。 3. 适用方向 适用于图像分类任务,可用于自动驾驶系统、交通标志识别模块、智能交通系统的深度学习模型训练;还可支撑交通标志识别算法基准测试、数据增量与失衡处理研究,以及 ResNet、Inception 等预训练图像分类模型的微调。

2026-01-10

Ultimate-Offensive-Red-Team 是一个专为 红队安全(Red Team)、攻击模拟与渗透测试 相关任务设计的训练数据集 它集合了大量真实世界的漏洞信息、攻击技术、场景案例和安全

数据量级:大约 25.6 k 条训练记录(单一 train split),并包含更大规模主文件版本。 主题分类: 1. SQL/XSS/命令注入等红队攻击载荷 2. Web 漏洞利用模式与检测正则 3. 漏洞分析与安全原理问答 4. 攻击场景与攻击链概述 5. 安全策略与缓解措施说明

2026-01-10

科研计划生成数据集 facebook/research-plan-gen 主要用于训练和评估 科研计划(research plan)自动生成能力 的模型 它的核心目标是推动 AI 在科研辅助工具、科研

数据集包含 约 22,000 条任务/示例,分为不同领域与语料来源。 数据主要分成三个子集,通常按照论文来源划分: arxiv(约 8,070 条) ml(约 7,560 条) pubmed(约 6,890 条) 每条示例对应一个科研问题或任务描述。 默认的训练/测试划分为: train(约 6.57k 条) test(约 1.5k 条)

2026-01-10

目标检测数据集汇总,收集了Pascal VOC、ImageNet、MS-COCO、Open Images、DOTA、Stanford Drone Dataset等19个数据集的论文、数据集下载链接

目标检测数据集汇总,收集了Pascal VOC、ImageNet、MS-COCO、Open Images、DOTA、Stanford Drone Dataset等19个数据集的论文、数据集下载链接。

2026-01-04

水下目标检测数据集-20260115 YOLO 目标检测

信息 该数据集包含7类水下生物,并为每种动物提供了边界框位置。 数据集已分为训练集、验证集和测试集。 数据 它包含 638 张图片。

2026-01-15

行人车辆检测数据集 YOLO 目标检测

概述 该数据集包含2000张人工标注的目标检测图像,主要针对行人和车辆。 标注采用YOLO格式。 该数据集是通过筛选公共图像数据集的子集,并使用LabelImg手动标注,然后进行严格的验证和质量检查而创建的。 数据集摘要 图片总数: 2000张 总注释数: 4,041 类别:人(0),车辆(1) 训练集/验证集比例: 80%/20% 注释格式: YOLO(标准化) 图片格式: JPG

2026-01-15

水果检测数据集 YOLO 目标检测

关于数据集 该数据集包含6种不同水果(苹果、葡萄、菠萝、橙子、香蕉和西瓜)的8479张图像。 水果图像采用YOLOv8格式进行标注。

2026-01-15

车辆检测数据集 YOLO 目标检测

关于数据集 描述: 欢迎使用汽车目标检测数据集,这是一个全面且标注细致的数据集,旨在为计算机视觉和目标检测领域的研究人员和从业人员提供支持。该数据集展示了各种各样的车辆,包括五个不同的类别:“救护车”、“公共汽车”、“轿车”、“摩托车”和“卡车”。 数据集概览: 我们精心整理的数据集包含大量高分辨率图像,这些图像捕捉了各种真实场景下的车辆。每张图像都经过专家标注,以方便进行精准的目标检测,使您能够探索和改进前沿的目标检测算法。 主要特点: 多样化的车辆类别:我们的数据集包含五种全面的车辆类别,使您能够应对目标检测中各种各样的现实挑战,从较小、较灵活的“摩托车”到较大、较复杂的“卡车”。 高质量标注:每张图像都配有针对所有目标类别的精确边界框标注,这些标注经过精心手工绘制,以确保准确性和可靠性。这有助于模型的稳健训练和评估。 真实场景:该数据集捕捉了各种环境条件、光照情况和视角下的车辆,反映了真实应用中目标检测任务的复杂性。 大规模数据集:我们的数据集包含大量图像,提供了充足的训练和测试样本,以促进稳健的模型开发和全面的评估。 潜在应用: 汽车目标检测数据集提供了大量的潜在应用,包括但不限于: 目标检测研究:利用我们的数据集来设计、开发和测试针对汽车场景的最先进的目标检测算法,从而推动您的研究工作。 自动驾驶车辆:训练和验证有助于推进自动驾驶系统发展的目标检测模型,增强其感知和与道路上各种车辆交互的能力。 交通监控与管理:利用我们的数据集,为城市环境中的交通监控、拥堵分析和车辆计数创建解决方案。 安全和应急服务:开发目标检测模型,帮助应急响应团队识别和响应不同类型的车辆,例如“救护车”和“公共汽车”,以提高道路安全。

2026-01-15

人行道裂缝数据集 YOLO 目标检测

关于数据集 该数据集包含100多张常见本地基础设施(人行道)的图像,重点关注结构缺陷。每张图像都配有像素级精确的损伤分割掩码,包括裂缝。该数据集旨在训练和验证鲁棒的语义分割模型(例如U-Net),用于城市环境中的自动化预测性维护和状态监测。

2026-01-15

火灾探测数据集 YOLO 目标检测

该数据集包含四个主要类别: 火:画面中出现可见的火焰或燃烧的物体。 光线:明亮的光源,例如反射光、灯光或手电筒光,可能会被误认为是火。 烟:可见的烟雾或蒸汽,密度和运动程度各不相同。 非火灾:正常的厨房活动,没有明火或烟雾。 客观的 该数据集旨在用于早期火灾探测系统的研究和模型开发。它可以通过区分火灾、烟雾和非危险的明亮物体来提高基于人工智能的安全系统的可靠性。 关键细节 截取自真实监控录像。 多种光照和环境条件。 每个类别都整理到单独的文件夹中。 适用于图像分类、分割和时间事件分析。 应用程序 用于火灾和烟雾探测的计算机视觉模型 安全和危险监测系统 事件识别和视觉异常检测研究

2026-01-15

坑洼检测数据集 YOLO 目标检测

该数据集旨在支持专注于道路安全和自动化基础设施维护的项目。路面坑洼对通勤者构成重大安全隐患,也是车辆损坏和交通事故的主要原因。通过提供一套精心挑选的带标注图像,该数据集旨在帮助开发人员和研究人员构建能够实时识别道路损坏的计算机视觉模型。 数据集构成:本数据集中的图像涵盖多种道路状况,包括不同的光照环境和沥青纹理。每张图像均使用 YOLO 格式进行精确标注,其中包括归一化的边界框坐标。数据已预先划分为训练集、验证集和测试集,以确保模型训练流程的简化和性能评估的公正性。 数据来源及方法:该数据集最初来源于 Roboflow Universe 并经过整理,其格式已针对 YOLOv11 架构进行了专门优化。此版本的数据集旨在用于教育和研究目的,重点在于提高自动道路勘测系统的精度。用户可将此数据直接集成到其深度学习流程中,以构建稳健的检测模型。

2026-01-14

药物警戒 Vignette OBB 数据集

概述 LIFA-VOBB(LIFA Vignette Oriented Bounding Box)是一个专门用于目标检测的数据集,旨在推进药房药物警戒和销售点 (POS) 系统的自动化。 该数据集是埃尔瓦德大学物联网机器学习硕士二年级课程作业的一部分,专门针对“Vignette OCR:药品标签识别”挑战赛而创建的。它旨在解决准确定位药品标签(“标签”)及其包装上的标题这一关键问题——这是可靠进行OCR识别和提取有效期的先决条件。 数据集用途 药房工作人员手动输入药品信息会浪费大量时间。要实现自动化,需要一个强大的AI流程,该流程能够: 精确定位贴纸和标题(物体检测)。 读取这些区域内的文本(OCR)。

2026-01-14

Scaling Large-Language-Model-based Multi-Agent Collaboration论文+代码实现

Scaling Large-Language-Model-based Multi-Agent Collaboration论文+代码实现

2026-01-13

Multi-Agent Software Development through Cross-Team Collaboration论文+代码实现

Multi-Agent Software Development through Cross-Team Collaboration 论文+代码实现

2026-01-13

Qwen3-VL-Embedding and Qwen3-VL-Reranker: A Unified Framework for State-of-the-Art Multimodal Retrie

Qwen3-VL-Embedding and Qwen3-VL-Reranker: A Unified Framework for State-of-the-Art Multimodal Retrieval and Ranking 论文+代码实现

2026-01-13

Qwen3-VL-Embedding and Qwen3-VL-Reranker: A Unified Framework for State-of-the-Art Multimodal Retrie

Qwen3-VL-Embedding and Qwen3-VL-Reranker: A Unified Framework for State-of-the-Art Multimodal Retrieval and Ranking 论文+代码实现

2026-01-13

SimpleMem: Efficient Lifelong Memory for LLM Agents 论文+代码实现

SimpleMem: Efficient Lifelong Memory for LLM Agents 论文+代码实现

2026-01-13

Thinking with Map: Reinforced Parallel Map-Augmented Agent for Geolocalization论文+代码实现

Thinking with Map: Reinforced Parallel Map-Augmented Agent for Geolocalization论文+代码实现

2026-01-13

LTX-2: Efficient Joint Audio-Visual Foundation Model 论文+代码

LTX-2: Efficient Joint Audio-Visual Foundation Model 论文+代码

2026-01-13

MiroThinker Pushing the Performance Boundaries of Open-Source Research Agents via Model, Context, an

MiroThinker Pushing the Performance Boundaries of Open-Source Research Agents via Model, Context, and Interactive Scaling 论文+代码实现。

2026-01-13

焊接缺陷数据集 YOLO 目标检测

本目标检测数据集用于检测焊接表面缺陷,包含三个类别:不良焊缝、良好焊缝和缺陷。 该数据集采用 YOLO 标注格式,专为目标检测任务而设计,标签映射位于 data.yaml 文件中。 数据集中的图像来源于多个图像库和数据集。

2026-01-12

房价预测,运用线性回归进行房价预测

在数据分析和机器学习领域,房价预测是一个经典且广泛研究的问题。kaggle作为全球性的数据科学竞赛平台,经常举办各类数据分析比赛,其中房价预测就是其中一个热门的竞赛主题。线性回归是解决这类问题的基础算法之一,其核心思想是通过建立一个或多个自变量与因变量之间的线性关系模型,来预测或评估结果。在房价预测中,线性回归模型可以根据房屋的各种特征,如面积、位置、房间数等,来预测房屋的售价。 在运用线性回归进行kaggle房价预测时,首先需要对数据进行预处理,包括数据清洗、缺失值处理、异常值处理以及特征选择等。数据清洗主要是去除重复记录、纠正错误数据、处理缺失值。缺失值可以通过平均值填充、众数填充或者使用机器学习方法如K-最近邻(K-NN)插补等方法处理。异常值的处理则需要根据实际情况进行,如剔除或修正数据,以保证数据的准确性。 特征选择是为了挑选出对预测结果影响较大的特征,提高模型的准确性和效率。这一步骤可以通过统计分析、相关性分析等方法来完成。在线性回归模型中,特征的重要性可以通过回归系数来体现。高相关性的特征对于模型的解释能力有显著作用。 模型构建是房价预测的核心环节,线性回归模型可以简单表示为y = ax + b的形式,其中y表示房价,x表示影响房价的各种特征向量,a表示特征对应的权重系数,b表示截距项。在实际应用中,可能需要构建多元线性回归模型,即多个自变量与因变量之间的关系,形式为y = a1x1 + a2x2 + ... + anxn + b。在构建模型时,需要注意变量的尺度统一,避免量纲不同导致的计算误差。 模型评估是通过一些统计指标来衡量模型的好坏。常用的评估指标包括决定系数(R²)、均方误差(MSE)、均方根误差(RMSE)等。R²值越接近1,表示模型解释变异的能力越强;MSE和RMSE则用于衡量模型预测误差的大小,值越小表示模型预测越准确。

2026-01-12

水果检测数据集 YOLO 目标检测

该数据集分为训练集和验证集,图像格式和尺寸各异。标注采用 YOLO 格式,提供每个水果实例的类别 ID 和边界框坐标。该数据集目前未进行任何显式预处理或数据增强。其预期用途是训练和评估目标检测模型,用于实时检测、自动识别和基准测试。

2026-01-12

番茄叶片病害检测数据集 YOLO 目标检测

关于数据集 概述 该数据集专为使用YOLOv8进行番茄叶片病害检测而设计。它包含10,853 张带标签的图像,涵盖10 种不同的番茄叶片状况,包括病毒、细菌和真菌感染以及健康叶片。 数据集详情 图片总数:10,853 张 火车模型:7,842 张图片(72%) 验证集:1960 张图像(18%) 测试集:1051 张图像(10%) 图片分辨率:已调整为640x640(拉伸) 注释格式:YOLOv8 课程(10个类别) 番茄细菌性斑点病 番茄早疫病 番茄晚疫病 番茄叶霉 番茄壳针孢叶斑病 番茄红蜘蛛(二斑叶螨) 番茄靶场 番茄黄化曲叶病毒 番茄健康 番茄花叶病毒 预处理应用 像素数据自动定向(已去除EXIF元数据) 图片已调整为 640x640(拉伸) 未进行任何增强处理 标注与数据收集

2026-01-11

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除