转载原文地址:可以点击:https://www.iteblog.com/archives/1890.html进入原文阅读。
一直运行的Spark Streaming程序如何关闭呢?是直接使用kill命令强制关闭吗?这种手段是可以达到关闭的目的,但是带来的后果就是可能会导致数据的丢失,因为这时候如果程序正在处理接收到的数据,但是由于接收到kill命令,那它只能停止整个程序,而那些正在处理或者还没有处理的数据可能就会被丢失。那我们咋办?这里有两种方法。
文章目录
等作业运行完再关闭
我们都知道,Spark Streaming每隔batchDuration的时间会把源源不断的流数据分割成一批有限数据集,然后计算这些数据,我们可以从Spark提供的监控页面看到当前batch是否执行完成,当作业执行完,我们就可以手动执行kill命令来强制关闭这个Streaming作业。这种方式的缺点就是得盯着监控页面,然后决定关不关闭,很不灵活。
如果想及时了解Spark、Hadoop或者Hbase相关的文章,欢迎关注微信公共帐号:iteblog_hadoop
通过Spark内置机制关闭
其实Spark内置就为我们提供了一种优雅的方法来关闭长期运行的Streaming作业,我们来看看 StreamingContext
类中定义的一个 stop
方法:
def
stop(stopSparkContext
:
Boolean, stopGracefully
:
Boolean)
|
官方文档对其解释是:Stop the execution of the streams, with option of ensuring all received data has been processed. 控制所有接收的数据是否被处理的参数就是 stopGracefully
,如果我们将它设置为true
,Spark则会等待所有接收的数据被处理完成,然后再关闭计算引擎,这样就可以避免数据的丢失。现在的问题是我们在哪里调用这个stop方法?
Spark 1.4版本之前
在Spark 1.4版本之前,我们需要手动调用这个 stop
方法,一种比较合适的方式是通过 Runtime.getRuntime().addShutdownHook
来添加一个钩子,其会在JVM关闭的之前执行传递给他的函数,如下:
Runtime.getRuntime().addShutdownHook(
new
Thread() {
override
def
run() {
log(
"Gracefully stop Spark Streaming"
)
streamingContext.stop(
true
,
true
)
}
})
|
如果你使用的是Scala,我们还可以通过以下的方法实现类似的功能:
scala.sys.addShutdownHook({
streamingContext.stop(
true
,
true
)
)})
|
通过上面的办法,我们客户确保程序退出之前会执行上面的函数,从而保证Streaming程序关闭的时候不丢失数据。
Spark 1.4版本之后
上面方式可以达到我们的需求,但是在每个程序里面都添加这样的重复代码也未免太过麻烦了!值得高兴的是,从Apache Spark 1.4版本开始,Spark内置提供了spark.streaming.stopGracefullyOnShutdown
参数来决定是否需要以Gracefully方式来关闭Streaming程序(详情请参见SPARK-7776)。Spark会在启动 StreamingContext
的时候注册这个钩子,如下:
shutdownHookRef
=
ShutdownHookManager.addShutdownHook(
StreamingContext.SHUTDOWN
_
HOOK
_
PRIORITY)(stopOnShutdown)
private
def
stopOnShutdown()
:
Unit
=
{
val
stopGracefully
=
conf.getBoolean(
"spark.streaming.stopGracefullyOnShutdown"
,
false
)
logInfo(s
"Invoking stop(stopGracefully=$stopGracefully) from shutdown hook"
)
// Do not stop SparkContext, let its own shutdown hook stop it
stop(stopSparkContext
=
false
, stopGracefully
=
stopGracefully)
}
|
从上面的代码可以看出,我们可以根据自己的需求来设置 spark.streaming.stopGracefullyOnShutdown
的值,而不需要在每个Streaming程序里面手动调用StreamingContext
的stop方法,确实方便多了。不过虽然这个参数在Spark 1.4开始引入,但是却是在Spark 1.6才开始才有文档正式介绍(可以参见https://github.com/apache/spark/pull/8898和http://spark.apache.org/docs/1.6.0/configuration.html)