spark 终止 运行_如何优雅地终止正在运行的Spark Streaming程序

本文介绍了如何优雅地终止Spark Streaming程序,以防止数据丢失。内容包括通过等待作业完成后再关闭或利用Spark的stopGracefullyOnShutdown参数来确保数据处理完毕后停止,以及不同Spark版本的实现方式。
摘要由CSDN通过智能技术生成

一直运行的Streaming程序如何关闭呢?是直接使用kill命令强制关闭吗?这种手段是可以达到关闭的目的,但是带来的后果就是可能会导致数据的丢失,因为这时候如果程序正在处理接收到的数据,但是由于接收到kill命令,那它只能停止整个程序,而那些正在处理或者还没有处理的数据可能就会被丢失。那我们咋办?这里有两种方法。

文章目录

等作业运行完再关闭

我们都知道,Streaming每隔batchDuration的时间会把源源不断的流数据分割成一批有限数据集,然后计算这些数据,我们可以从提供的监控页面看到当前batch是否执行完成,当作业执行完,我们就可以手动执行kill命令来强制关闭这个Streaming作业。这种方式的缺点就是得盯着监控页面,然后决定关不关闭,很不灵活。

如果想及时了解Spark、Hadoop或者Hbase相关的文章,欢迎关注微信公共帐号:iteblog_hadoop

通过Spark内置机制关闭

其实Spark内置就为我们提供了一种优雅的方法来关闭长期运行的Streaming作业,我们来看看 StreamingContext类中定义的一个 stop 方法:

def stop(stopSparkContext : Boolean, stopGracefully : Boolean)

官方文档对其解释是:Stop the execution of the streams, with option of ensuring all received data has been processed.控制所有接收的数据是否被处理的参数就是 stopGracefully,如果我们将它设置为true,Spark则会等待所有接收的数据被处理完成,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值