202. 快乐数
编写一个算法来判断一个数 n
是不是快乐数。
「快乐数」 定义为:
- 对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和。
- 然后重复这个过程直到这个数变为 1,也可能是 无限循环 但始终变不到 1。
- 如果这个过程 结果为 1,那么这个数就是快乐数。
如果 n
是 快乐数 就返回 true
;不是,则返回 false
。
示例 1:
输入:n = 19 输出:true 解释: 12 + 92 = 82 82 + 22 = 68 62 + 82 = 100 12 + 02 + 02 = 1
示例 2:
输入:n = 2 输出:false
提示:
1 <= n <= 231 - 1
哈希
首先想到的就是哈希和双指针嘛,那就先拿哈希试一下。
class Solution {
public boolean isHappy(int n) {
Set<Integer> hash = new HashSet<>();
//只要n不等于1且hash中不存在这个数,就开始循环,否则跳出循环
while(n!=1&&!hash.contains(n)){
hash.add(n);
n=nextNumber(n);
}
return 1==n;
}
//首先,对于每个n都要一直循环得到它的下一个数字,
/*
输入:n = 19
输出:true
解释:
12 + 92 = 82
82 + 22 = 68
62 + 82 = 100
12 + 02 + 02 = 1
*/
//所以,新设置一个函数得到下一个数字
public int nextNumber(int n) {
int sum = 0;
while (n > 0) {
int d = n % 10;
n = n / 10;
sum += d * d;
}
return sum;
}
}
效果一般,用哈希太慢了。
我们发现每次都要得到下一个数字,存在一个递归的行为。
接着看了一下输出的量级也不大,试一下递归。
递归
class Solution {
//如果要用递归的话,我们需要把哈希表放在外面
//不然每一次递归都在进行初始化哈希表
HashSet<Integer> hash = new HashSet<>();
public boolean isHappy(int n) {
//为1的时候直接返回true
if(1==n){
return true;
}
//哈希中有有这个数的时候就该退出了(说明进入了环)
if(hash.contains(n)){
return false;
}
//接下来是递归的操作
//直接存进哈希中
hash.add(n);
int sum=0;
while(0!=n){
//求和
int tmp = n%10;
sum+=tmp*tmp;
n/=10;
}
return isHappy(sum);
}
}
双指针
class Solution {
//快慢指针
//slow每次前进一格,fast每次前进2格
//如果成环,则fast总会追上slow,所以跳出循环
//如果终点是1,则fast会一直停留在终点直到slow追上
//我们在循环中加入判断,当fast到1时,直接返回true
public boolean isHappy(int n) {
int slow = n;
int fast=getNext(n);
while(fast!=1&&slow!=fast){
slow = getNext(slow);
fast=getNext(getNext(fast));
if(fast==1) return true;
}
return 1==fast;
}
public int getNext(int n){
int sum=0;
while(n>0){
int tmp = n%10;
sum+=tmp*tmp;
n/=10;
}
return sum;
}
}
yeah!完结