Pytorch之nn.Module和Containers三种搭建模型方式

torch.nn

  • nn.Parameter:张量子类表示可学习参数,如weight, bias
  • nn.Module:所有网络层基类,管理网络属性
  • nn.functional:函数具体实现,如卷积、池化、激活函数等
  • nn.init:参数初始化方法

nn.Module中重要属性

  • parameters:存储管理nn.Parameter类
  • modules:存储管理nn.Module类
  • buffers :存储管理缓冲属性,如BN层中的running_ mean
  • ***_hooks:存储管理钩子函数
self._parameters = OrderedDict()
self._buffers = OrderedDict()
self._backward_hooks = OrderedDict()
self._forward_hooks = OrderedDict()
self._forward_pre_hooks = OrderedDict()
self._state_dict_hooks = OrderedDict()
self._load_state_dict_pre_hooks = OrderedDict()
self._modules = OrderedDict()

nn.Module总结

  • 一个module可以包含多个子module
  • 一个module相当于一个运算,必须实现forward()函数
  • 每个module都有8个字典管理它的属性

Containers容器(实现模型搭建的3种方式)

nn.Sequential:按顺序包装多个网络层
顺序性:各网络层之间严格按照顺序构建
自带forward():自带的forward里,通过for循环依次进行前向传播运算。

class LeNetSequential(nn.Module):
    def __init__(self, classes):
        super(LeNetSequential, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 6, 5),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2),
            nn.Conv2d(6, 16, 5),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2),)

        self.classifier = nn.Sequential(
            nn.Linear(16*5*5, 120),
            nn.ReLU(),
            nn.Linear(120, 84),
            nn.ReLU(),
            nn.Linear(84, classes),)

    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size()[0], -1)
        x = self.classifier(x)
        return x
class LeNetSequentialOrderDict(nn.Module):
    def __init__(self, classes):
        super(LeNetSequentialOrderDict, self).__init__()

        self.features = nn.Sequential(OrderedDict({
            'conv1': nn.Conv2d(3, 6, 5),
            'relu1': nn.ReLU(inplace=True),
            'pool1': nn.MaxPool2d(kernel_size=2, stride=2),

            'conv2': nn.Conv2d(6, 16, 5),
            'relu2': nn.ReLU(inplace=True),
            'pool2': nn.MaxPool2d(kernel_size=2, stride=2),
        }))

        self.classifier = nn.Sequential(OrderedDict({
            'fc1': nn.Linear(16*5*5, 120),
            'relu3': nn.ReLU(),

            'fc2': nn.Linear(120, 84),
            'relu4': nn.ReLU(inplace=True),

            'fc3': nn.Linear(84, classes),
        }))

    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size()[0], -1)
        x = self.classifier(x)
        return x

nn.ModuleList:像python的list一样包装多个网络层,以迭代方式调用网络层
主要方法:
append() :在ModuleList后面添加网络层
extend() :拼接两个ModuleList
insert() :指定在ModuleList中位置插入网络层

class ModuleList(nn.Module):
    def __init__(self):
        super(ModuleList, self).__init__()
        self.linears = nn.ModuleList([nn.Linear(10, 10) for i in range(20)])

    def forward(self, x):
        for i, linear in enumerate(self.linears):
            x = linear(x)
        return x

nn.ModuleDict:像python的dict一样包装多个网络层,以索引的方式调用网络层
主要方法:
clear() :清空ModuleDict
items() :返回可迭代的键值对(key-value pairs)
keys() :返回字典的键(key)
values() :返回字典的值(value)
pop() :返回一对键值,并从字典中删除

class ModuleDict(nn.Module):
    def __init__(self):
        super(ModuleDict, self).__init__()
        self.choices = nn.ModuleDict({
            'conv': nn.Conv2d(10, 10, 3),
            'pool': nn.MaxPool2d(3)
        })

        self.activations = nn.ModuleDict({
            'relu': nn.ReLU(),
            'prelu': nn.PReLU()
        })

    def forward(self, x, choice, act):
        x = self.choices[choice](x)
        x = self.activations[act](x)
        return x

Containers总结

nn. Sequentialo顺序性:各网络层之间严格按顺序执行,常用于block构建
nn.ModuleList :迭代性:常用于大量重复网构建,通过for循环实现重复构建
nn. ModuleDict :索引性:常用于可选择的网络层

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值