题目:
老板有一袋金块(共n块,2≤n≤100),两名最优秀的雇员每人可以得到其中的一块,排名第一的得到最重的金块,排名第二的则得到袋子中最轻的金块。
输入一个正整数N(2≤N≤100)和N个整数,用分治法求出最重金块和最轻金块。
本题要求实现2个函数,分别使用分治法在数组中找出最大值、最小值。
函数接口定义:
int max(int a[ ], int m, int n); int min(int a[ ], int m, int n);
递归函数max
用分治法求出a[m]~a[n]中的最大值并返回。
递归函数min
用分治法求出a[m]~a[n]中的最小值并返回。
裁判测试程序样例:
#include <stdio.h> #define MAXN 101 int max(int a[ ], int m, int n); int min(int a[ ], int m, int n); int main(void) { int i, n; int a[MAXN]; scanf ("%d", &n); if(n >= 2 && n <= MAXN-1 ){ for(i = 0; i < n; i++){ scanf ("%d", &a[i]); } printf("max = %d\n", max(a, 0, n-1)); printf("min = %d\n", min(a, 0, n-1)); }else{ printf("Invalid Value.\n"); } return 0; } /* 请在这里填写答案 */
输入样例:
6
3 9 4 9 2 4
输出样例:
max = 9
min = 2
答案:
int max(int a[ ], int m, int n)
{
if(m==n)return a[m];
else
{
int left_max=max(a,m,(m+n)/2);
int right_max=max(a,(m+n)/2+1,n);
return (left_max>right_max)?left_max:right_max;
}
}
int min(int a[ ], int m, int n)
{
if(m==n)return a[m];
else
{
int left_min=min(a,m,(m+n)/2);
int right_min=min(a,(m+n)/2+1,n);
return (left_min<right_min)?left_min:right_min;
}