ACL 2022事件相关(事件抽取、事件关系抽取、事件预测等)论文汇总,已更新全部的论文。
Event Extraction
- Query and Extract: Refining Event Extraction as Type-oriented Binary Decoding 讲解地址
本篇论文将事件抽取定义为query-and-extract范式,通过利用事件类型和论元角色之间的语义,提高事件抽取的性能,同时模型在新事件类型和跨本体迁移方面具有泛化性。
- Dynamic Prefix-Tuning for Generative Template-based Event Extraction
提出了一种基于模板的生成方法(动态前缀),通过将上下文信息与特定于类型的前缀相结合来学习特定于上下文的前缀
- Legal Judgment Prediction via Event Extraction with Constraints
法律判决预测(LJP,包括三个多分类的子任务:法律条文、罪名、刑期),目前LJP 模型做出的错误预测部分归因于它们未能(1)定位决定判决的关键事件信息(2)利用 LJP 子任务之间存在的跨任务一致性约束。 本篇论文提出一种带有约束的基于事件的预测模型。
- Saliency as Evidence: Event Detection with Trigger Saliency Attribution
现有的事件检测(ED)方法通常遵循“一个模型适合所有类型”的方法,这种方法看不到事件类型之间的差异,并且通常会导致性能出现很大偏差。找到性能偏差的原因对于ED模型的稳健性至关重要,本篇论文提出了一个称为触发词显著性属性的新概念,它可以明确地量化事件的潜在模式。在此基础上为 ED开发了一种新的训练机制,它可以区分触发词依赖和上下文依赖类型,并在两个基准上取得了良好的性能。