ACL 2022事件相关(事件抽取、事件关系抽取、事件预测等)论文汇总

这篇博客汇总了ACL 2022上关于事件抽取、事件关系抽取、事件预测等领域的论文,探讨了如何通过事件表示学习、对比学习和聚类框架改进事件理解,以及在法律判决预测、多语言事件论元抽取等方面的应用。此外,还介绍了预训练模型和数据集在事件相关任务中的最新进展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ACL 2022事件相关(事件抽取、事件关系抽取、事件预测等)论文汇总,已更新全部的论文。

Event Extraction

  • Query and Extract: Refining Event Extraction as Type-oriented Binary Decoding 讲解地址
    本篇论文将事件抽取定义为query-and-extract范式,通过利用事件类型和论元角色之间的语义,提高事件抽取的性能,同时模型在新事件类型和跨本体迁移方面具有泛化性。
    在这里插入图片描述
  • Dynamic Prefix-Tuning for Generative Template-based Event Extraction
    提出了一种基于模板的生成方法(动态前缀),通过将上下文信息与特定于类型的前缀相结合来学习特定于上下文的前缀
    在这里插入图片描述
  • Legal Judgment Prediction via Event Extraction with Constraints
    法律判决预测(LJP,包括三个多分类的子任务:法律条文、罪名、刑期),目前LJP 模型做出的错误预测部分归因于它们未能(1)定位决定判决的关键事件信息(2)利用 LJP 子任务之间存在的跨任务一致性约束。 本篇论文提出一种带有约束的基于事件的预测模型。
    在这里插入图片描述
  • Saliency as Evidence: Event Detection with Trigger Saliency Attribution
    现有的事件检测(ED)方法通常遵循“一个模型适合所有类型”的方法,这种方法看不到事件类型之间的差异,并且通常会导致性能出现很大偏差。找到性能偏差的原因对于ED模型的稳健性至关重要,本篇论文提出了一个称为触发词显著性属性的新概念,它可以明确地量化事件的潜在模式。在此基础上为 ED开发了一种新的训练机制,它可以区分触发词依赖和上下文依赖类型,并在两个基准上取得了良好的性能。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hlee-top

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值