先是比较简单的版本
const int MAXN = 1010;
int n;
int a[MAXN];
int dp[MAXN];
int lis()
{
memset(dp, 0, sizeof(dp));
int Max;
for (int i = 0; i < n; ++i)
{
Max = 0;
for (int j = 0; j < i; ++j)
{
if (a[i] > a[j])
{
Max = max(Max, dp[j]);
}
}
dp[i] = Max + 1;
}
Max = 0;
for (int i = 0; i < n; ++i)
{
if (dp[i] > Max) Max = dp[i];
}
return Max;
}
然后是常用到的n*logn的算法
const int MAXN = 1010;
int n;
int a[MAXN];
int dp[MAXN];
int lis()
{
memset(dp, 0, sizeof(int)*n);
int len = 1;
dp[0] = a[0];
for (int i = 1; i < n; ++i)
{
int pos = lower_bound(dp, dp + len, a[i]) - dp;
dp[pos] = a[i];
len = max(len, pos + 1);
}
return len;
}
上面的都是求严格递增的最大上升子序列
如果题目有变形如果求最大上升子序列的话,我自己也给个模板,巨巨教我的
int calc(int sign)
{
fill(dp,dp+maxn,inf);
int ans = 0;
for(int i=0;i<n;i++){
int index = upper_bound(dp,dp+ans,a[i]*sign) - dp;//这个是求不严格的序列,如果要求严格的就用lower_bound
dp[index] = a[i]*sign;
ans = max(ans,index+1);
}
return ans;
}
int lins()
{
return calc(1);// 求上升的
}
int lnds()
{
return calc(-1);//求下降的
}
加油~~