LIS 的模板

代码来自别人的博客

先是比较简单的版本

const int MAXN = 1010;
int n;
int a[MAXN];
int dp[MAXN];

int lis()
{
    memset(dp, 0, sizeof(dp));
    int Max;
    for (int i = 0; i < n; ++i)
    {
        Max = 0;
        for (int j = 0; j < i; ++j)
        {
            if (a[i] > a[j])
            {
                Max = max(Max, dp[j]);
            }
        }
        dp[i] = Max + 1;
    }
    Max = 0;
    for (int i = 0; i < n; ++i)
    {
        if (dp[i] > Max)    Max = dp[i];
    }
    return Max;
}

然后是常用到的n*logn的算法

const int MAXN = 1010;
int n;
int a[MAXN];
int dp[MAXN];

int lis()
{
    memset(dp, 0, sizeof(int)*n);
    int len = 1;
    dp[0] = a[0];
    for (int i = 1; i < n; ++i)
    {
        int pos = lower_bound(dp, dp + len, a[i]) - dp;
        dp[pos] = a[i];
        len = max(len, pos + 1);
    }
    return len;
}

上面的都是求严格递增的最大上升子序列
如果题目有变形如果求最大上升子序列的话,我自己也给个模板,巨巨教我的

int calc(int sign)
{
    fill(dp,dp+maxn,inf);
    int ans = 0;
    for(int i=0;i<n;i++){
        int index = upper_bound(dp,dp+ans,a[i]*sign) - dp;//这个是求不严格的序列,如果要求严格的就用lower_bound
        dp[index] = a[i]*sign;
        ans = max(ans,index+1);
    }
    return ans;
}


int lins()
{
    return calc(1);// 求上升的
}

int lnds()
{
    return calc(-1);//求下降的
}

加油~~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值