MATLAB插值与拟合(3)

原文地址:MATLAB插值与拟合(3) 作者:Rabbitfly

§2 插值问题

在应用领域中,由有限个已知数据点,构造一个解析表达式,由此计算数据点之间的函数值,称之为插值。

实例:海底探测问题

某公司用声纳对海底进行测试,在5×5海里的坐标点上测得海底深度的值,希望通过这些有限的数据了解更多处的海底情况。并绘出较细致的海底曲面图。

一、一元插值

一元插值是对一元数据点(xi,yi)进行插值。

1.  线性插值:由已知数据点连成一条折线,认为相临两个数据点之间的函数值就在这两点之间的连线上。一般来说,数据点数越多,线性插值就越精确。

调用格式:yi=interp1(x,y,xi,’linear’)  %线性插值

zi=interp1(x,y,xi,’spline’)  %三次样条插值

wi=interp1(x,y,xi,’cubic’)  %三次多项式插值

说明:yi、zi、wi为对应xi的不同类型的插值。x、y为已知数据点。

例1已知数据:

x

0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1

y

.3

.5

1

1.4

1.6

1.9

.6

.4

.8

1.5

2

求当xi=0.25时的yi的值。

程序:

x=0:.1:1;

y=[.3 .5 1 1.4 1.6 1 .6 .4 .8 1.5 2];

yi0=interp1(x,y,0.025,'linear')

xi=0:.02:1;

yi=interp1(x,y,xi,'linear');

zi=interp1(x,y,xi,'spline');

wi=interp1(x,y,xi,'cubic');

plot(x,y,'o',xi,yi,'r+',xi,zi,'g*',xi,wi,'k.-')

legend('原始点','线性点','三次样条','三次多项式')

结果:yi0 =  0.3500

MATLAB插值与拟合 - 飞扬 Youth - 浇灌一处绿色的风景

 

要得到给定的几个点的对应函数值,可用:

xi =[ 0.2500  0.3500  0.4500]

yi=interp1(x,y,xi,'spline')

结果:

yi =1.2088  1.5802  1.3454

(二) 二元插值

二元插值与一元插值的基本思想一致,对原始数据点(x,y,z)构造见世面函数求出插值点数据(xi,yi,zi)。

一、单调节点插值函数,即x,y向量是单调的。

调用格式1:zi=interp2(x,y,z,xi,yi,’linear’)

‘liner’ 是双线性插值 (缺省)

调用格式2:zi=interp2(x,y,z,xi,yi,’nearest’)

’nearest’ 是最近邻域插值

调用格式3:zi=interp2(x,y,z,xi,yi,’spline’)

‘spline’是三次样条插值

说明:这里x和y是两个独立的向量,它们必须是单调的。z是矩阵,是由x和y确定的点上的值。z和x,y之间的关系是z(i,:)=f(x,y(i)) z(:,j)=f(x(j),y) 即:当x变化时,z的第i行与y的第i个元素相关,当y变化时z的第j列与x的第j个元素相关。如果没有对x,y赋值,则默认x=1:n, y=1:m。n和m分别是矩阵z的行数和列数。

例2已知某处山区地形选点测量坐标数据为:

x=0  0.5  1.5  2.5  3.5  4.5  5

y=0  0.5  1.5  2.5  3.5  4.5  5.5  6

海拔高度数据为:

z=89 90 87 85 92 91 96 93 90 87 82

   92 96 98 99 95 91 89 86 84 82 84

   96 98 95 92 90 88 85 84 83 81 85

   80 81 82 89 95 96 93 92 89 86 86

   82 85 87 98 99 96 97 88 85 82 83

   82 85 89 94 95 93 92 91 86 84 88

   88 92 93 94 95 89 87 86 83 81 92

   92 96 97 98 96 93 95 84 82 81 84

   85 85 81 82 80 80 81 85 90 93 95

   84 86 81 98 99 98 97 96 95 84 87

   80 81 85 82 83 84 87 90 95 86 88

   80 82 81 84 85 86 83 82 81 80 82

   87 88 89 98 99 97 96 98 94 92 87

其地貌图为:

MATLAB插值与拟合 - 飞扬 Youth - 浇灌一处绿色的风景

对数据插值加密形成地貌图。

程序:

x=0:.5:5;

y=0:.5:6;

z=[89 90 87 85 92 91 96 93 90 87 82

   92 96 98 99 95 91 89 86 84 82 84

   96 98 95 92 90 88 85 84 83 81 85

   80 81 82 89 95 96 93 92 89 86 86

   82 85 87 98 99 96 97 88 85 82 83

   82 85 89 94 95 93 92 91 86 84 88

   88 92 93 94 95 89 87 86 83 81 92

   92 96 97 98 96 93 95 84 82 81 84

   85 85 81 82 80 80 81 85 90 93 95

   84 86 81 98 99 98 97 96 95 84 87

   80 81 85 82 83 84 87 90 95 86 88

   80 82 81 84 85 86 83 82 81 80 82

   87 88 89 98 99 97 96 98 94 92 87];

mesh(x,y,z)  %绘原始数据图

xi=linspace(0,5,50);  %加密横坐标数据到50个

yi=linspace(0,6,80);  %加密纵坐标数据到60个

[xii,yii]=meshgrid(xi,yi);  %生成网格数据

zii=interp2(x,y,z,xii,yii,'cubic');  %插值

mesh(xii,yii,zii)  %加密后的地貌图

hold on     % 保持图形

[xx,yy]=meshgrid(x,y);  %生成网格数据

plot3(xx,yy,z+0.1,'ob')  %原始数据用‘O’绘出

MATLAB插值与拟合 - 飞扬 Youth - 浇灌一处绿色的风景

 

2、二元非等距插值

调用格式:zi=griddata(x,y,z,xi,yi,’指定插值方法’)

插值方法有: linear          % 线性插值   (默认)

             bilinear     % 双线性插值

             cubic        % 三次插值

             bicubic      % 双三次插值

             nearest      % 最近邻域插值

例:用随机数据生成地貌图再进行插值

程序:

x=rand(100,1)*4-2;

y=rand(100,1)*4-2;

z=x.*exp(-x.^2-y.^2);

ti=-2:.25:2;

[xi,yi]=meshgrid(ti,ti); % 加密数据

zi=griddata(x,y,z,xi,yi);% 线性插值

mesh(xi,yi,zi)

hold on

plot3(x,y,z,'o')

 

                                                               转自  飞扬youth  的博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值