自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Zetaa的博客

邮箱:officeforcsdn@163.com

  • 博客(142)
  • 资源 (3)
  • 收藏
  • 关注

原创 rapidjson安装使用

c++ json 库 - rapidjson 库的快速安装以及使用。

2023-01-16 21:04:15 857 1

原创 离散数学 取非符号 latex

离散数学取非符号: \lnot ¬\lnot¬

2021-04-26 16:21:09 6019

原创 脚本程序模拟手动 批量百度云链接文件自动保存

场景:有大批量的百度云链接及其提取码,现在希望对这些链接对应的文件进行保存。保存一个百度云链接文件的手动流程比较固定,但对于大批量百度云链接文件,显然不适合手动保存。针对场景,编写一个脚本文件,模拟手动保存过程,自动保存大批量的百度云文件。效果如图 ...

2021-02-22 15:14:25 1084

原创 Qt 节假日程序 透明+任务栏无图标+星星闪烁+exe图标

效果如图

2021-01-04 15:33:21 399

原创 qt 打包单个文件

使用 release方式编译                                          &n

2021-01-04 12:23:18 349

原创 c++ 互斥锁必须使用在同一个线程当中 不能lock和 unlock两个操作分别在不同线程中

lock 和unlock必须在同一个线程中!!在子线程中上锁,在主线程中解锁,程序运行会 undefined behavior。例子1:子线程中上锁主线程中解锁#include <iostream>#include <chrono>#include <mutex>#include <thread>using namespace std;mutex mtx;void f(){ mtx.lock(); }int main(){

2020-12-23 14:21:50 1537

原创 c++多线程 唤醒notify_one/notify_all 必须发生在阻塞之前才是 有效唤醒

如果线程 t 还没在条件变量 cv 上阻塞,此时在条件变量 cv 上进行唤醒操作,该唤醒操作首先显然对线程 t 现在不会有影响,同时也不会对之后线程 t 在条件变量 cv 上阻塞有影响。效果图中程序不再继续执行,进入永久等待阻塞状态。(子线程等待被唤醒,主线程等待子线程执行结束)。测试代码#include <iostream>#include <thread>#include <condition_variable>#include <mutex&g

2020-12-23 10:16:56 2452

原创 C++线程一次创建 多次使用 避开循环场景中 线程多次创建销毁的开销

下面的代码中有三个填空部分,分别是:1)主线程在唤醒子线程之前的准备工作的代码,2)子线程干活具体内容的代码,3)主线程在一轮循环中子线程全部结束后(只是一轮)后的处理工作的代码。// 线程一次创建,多次使用#include <iostream> // std::cout#include <thread> // std::thread#include <mutex> // std::mutex,

2020-12-22 15:27:52 4527 4

原创 线性不可分SVM 软间隔

前言:仅个人小记。参看https://blog.csdn.net/qq_25847123/article/details/108058804。线性不可分大部分样本线性可分,总体线性不可分。 引入松弛变量某些样本点不能满足函数间隔大于等于 111 这个约束条件,软间隔策略就是对每个样本点引入一个松弛变量 ξ≥0\xi\geq 0ξ≥0。是的函数间隔加上松弛变量是大于等于 111 的。此时,之前硬间隔最大化中的约束条件更变为yi(w⋅xi+b)≥1−ξiy_i(\boldsymbol{w}\cdot

2020-08-17 19:31:59 578

原创 线性可分支持向量机 对偶性形式求解

前言:仅个人小记。不论是对偶还是原问题形式,都是转成二次规划问题,编程角度上来看没太大差别。但从理论角度来看,对偶性形式能够直接凸显出“内积”形式,进而可以很好地引入“核”概念。经过一系列的变换,得到对偶最优化问题为对偶形式min⁡α12∑i=1N∑i=1Nαiαjyiyj(xixj)−∑i=1Nαis.t.∑i=1Nαiyi=1αi≥0,i=1,2,...,N\min_{\alpha}\frac{1}{2}\sum_{i=1}^{N}\sum_{i=1}^{N}\alpha_i\alpha_jy_i

2020-08-17 16:40:56 1701

原创 线性可分支持向量机 凸二次规划解决原问题 python

前言:仅个人小记。问题来自李航的《统计学习方法》第二版中例题 7.1。问题如图,支持向量机的训练数据集为:正例点为 x1=(3,3),x2=(4,3)x_1=(3,3),x_2=(4,3)x1​=(3,3),x2​=(4,3),负例点为 x3=(1,1)x_3=(1,1)x3​=(1,1),求最大间隔分离超平面。最大间隔法输入: 线性可分训练数据集 T=(x1,y1),(x2,y2),...,(xN,yN)T={(x_1,y_1),(x_2,y_2),...,(x_N,y_N)}T=(x1​,y

2020-08-17 15:06:28 2322

原创 python 的 None 不能对外部变量初始化

注:仅个人小记。python 中使用外部变量时候,在对全局变量初始化时,不能使用 None 进行初始化,None 表示空对象,在使用 None 变量初始化时候不会有对象产生。def f(): a = 100 returndef g(): print(a) return a = Nonef() # 并没能对外部变量 a 进行初始化 g() # 打印结果仍然为 None...

2020-07-12 20:48:18 1015

原创 Spyder 脚本不能直接访问variable explorer 中已有的变量

很多时候需要在脚本代码中直接使用 Variable Explorer 中已有的变量,这是很方便的(虽然偶尔也会导致一些小问题)。最近更新了Spyder,这个功能没有了,不能正常访问。本文给出设置该功能的方法。...

2020-06-20 20:01:13 3526 5

原创 Anaconda 安装第三方包 libsvm liblinear

前言:似乎直接使用 anaconda Navigator 或者使用 conda 安装 libsvm无效,故而转而手动安装,安装步骤非常简洁。安装 libsvm 和安装 liblinear 方法完全相同,下面只以为anaconda手动安装 liblinear 为例进行描述。下载 libsvm 和 liblinear打开 liblinear 压缩包并将 windows 文件夹中的 dll 文件拷贝至某个系统目录在 anaconda Lib site-packages 目录下新建文件夹并命名libli

2020-06-11 23:41:20 1739 2

原创 Python 绘制椭圆 平移 旋转

前言:使用极坐标系描述起来似乎更加方便。效果目的椭圆公式演变直角坐标形式x2a2+y2b2=1\frac{x^2}{a^2}+\frac{y^2}{b^2}=1a2x2​+b2y2​=1极坐标形式x=acosθy=bcosθx=acos\theta\\y=bcos\thetax=acosθy=bcosθ纯粹平移:右移 sxs_xsx​,上移 sys_ysy​,得到xx=x+sxyy=y+syx_x=x+s_x\\y_y=y +s_yxx​=x+sx​yy​=y+sy​纯粹旋转:

2020-05-31 21:41:30 2813

原创 kmeans初始中心不同结果可能不同 (举例)

本文给出 kmeans算法当初始中心点不同时,聚类结果可能是不同的实际例子。样例数据数据为101010个二维数据点,如下2,21,11,0240,100,1110,1212,1010,011,02, 2\\1 ,1\\1, 0\\2 4\\0, 10\\0, 11\\10, 12\\12, 10\\10, 0\\11, 0\\ 2,21,11,0240,100,1110,1212,1010,011,0第一次选择初始中心点以以下四个点作为初始中心点,进行k=4k=4k=4的kmea

2020-05-31 16:01:01 5641 1

原创 二维list 不同长度列表 初始化 (Python)

前言:初始化一个空的二维列表,二维列表由多个列表构成。注意:Python list使用时,a=[ ]*3,只是在复制引用(只是浅拷贝),只有在修改 a[i] 这个对象时,才会为 a[i] 重新分配内存,实现深拷贝。目标生成 [[],[],[]]错误方法(浅拷贝)a = [[]]*3# 表示对 [] 里面的元素,即也是一个列表,并且是空列表 []进行三倍的复制# 得到结果为 [ [] , [] , [] ]# 但这是三个完全相同的list ,他们指向同一个地址# 而 a[i].append

2020-05-31 13:13:04 2212 1

原创 组合数元组编号

前言:仅个人小记。问题描述如何遍历nnn个点中的所有444元组呢,即如何遍历(n4)\binom{n}{4}(4n​)个不同的四元组呢?举例:n=6n=6n=6,则所有的444元组共有(64)=15\binom{6}{4}=15(46​)=15个,具体为(1,2,3,4)(1,2,3,5)(1,2,3,6)(1,2,4,5)(1,2,4,6)(1,2,5,6)(1,3,4,5)(1,3,4,6)(1,3,5,6)(1,4,5,6)(2,3,4,5)(2,3,4,6)(2,4,5,6)(3,4,5,6)

2020-05-20 20:24:25 447

原创 简述 index calculus 算法

前言:仅个人小记。index calculus 本质上还是蛮力计算,不过这个蛮力相对于普通的蛮力更加优雅有效,但仍然是指数级别,可以称之为亚指数时间复杂。前提交代域FpF_pFp​,生成元为 b。b为底数,ind(a)ind(a)ind(a)表示以 b 为的 a 的离散对数。挑一个值S,找出小于S的所有素数,构成一个基组AA={p1,p2,...,pk}A=\{p_1,p_2,...,p...

2020-01-09 16:08:44 1689 1

原创 度为n的不可约多项式和Fp^n 这个域的关系

前言:仅个人小记。域FpF_pFp​,p是素数。域FpnF_{p^n}Fpn​是域FpF_pFp​的扩域,即Fp<FpnF_p<F_{p^n}Fp​<Fpn​。f(x)∈Fp[x]={Σi=0naixi,ai∈Fp},其中n不受限制f(x)\in F_p[x]=\{\Sigma_{i=0}^na_ix^i,a_i\in F_p\},其中n不受限制f(x)∈Fp​[x]={Σ...

2020-01-09 13:10:16 869

原创 计算不可约多项式的阶

前言:仅个人小记。这里直接讨论不可约多项式,仅简要交代计算不可约多项式的阶基本方法。具体还是要枚举。以例子作为说明计算p(x)=x4+x+1p(x)=x^4+x+1p(x)=x4+x+1在域F2F_2F2​上的阶。记p(x)p(x)p(x)的阶为 v。事实一:p(x)∣xv−1p(x)|x^v-1p(x)∣xv−1。事实二:v∣qd−1v|q^d-1v∣qd−1。其中,q是域的特征,d是...

2020-01-09 11:12:15 2354 2

原创 Frobenius自同构

前言:仅个人小记。前要知识:aj≡i mod naj\equiv i\ mod\ naj≡i mod n,当a⊥na\perp na⊥n时,j 有唯一解。域F,域F的特征为char(F)=pchar(F)=pchar(F)=p,p为素数。域的元素个数必然为p的幂次方,记为 pnp^npn。相应的域中乘法群的阶为pn−1p^n-1pn−1。Frob...

2020-01-07 19:42:29 4296

原创 自盲化能力 Paillier和EIGamal

前言:仅个人小记。记录两个具有自盲化能力的加密体制。所谓自盲化,指的是对密文进行随机化操作,操作后得到新密文,对新旧密文的解密结果相同。因为随机化,故而敌手无法判定新密文是否对应着原来的明文。这里只是简要交代盲化方法,不对其他细节进行严格表述。Paillier 加密体制自盲化给定一个Paillier 密文,公钥为 N,c=(1+N)mrN modN2c=(1+N)^mr^N\ mo...

2020-01-05 16:12:15 1248

原创 牛顿恒等式 牛顿和

前言:仅个人小记。该恒等式推导逻辑非常简洁。目标,求一个多项式的所有根的次幂和。比如多项式P(x)=Σi=0naixiP(x)=\Sigma_{i=0}^{n}a_i x^iP(x)=Σi=0n​ai​xi的根为 α,β,...,ω\alpha,\beta,...,\omegaα,β,...,ω,现在希望求得Pk=αk+βk+...+ωkP_k=\alpha^k+\beta^k+...+\omeg...

2020-01-05 00:30:38 4885 1

原创 有限域的乘法群一定是循环群

前言:仅个人小记暂先交代证明的基本思路:因为是有限域,所以必然是整环,所以必然无零因子,进而度公式必然满足,即 deg(fg)=deg(f)+deg(g)deg(fg)=deg(f)+deg(g)deg(fg)=deg(f)+deg(g),xn=1x^n=1xn=1的不同根最多有 n 个(可以结合度公式采用反证法进行说明),同时xn−1=1x^{n-1}=1xn−1=1的不同根最多只有 n-1...

2019-12-15 10:30:51 9831 1

原创 循环群的阶每一个因子都对应唯一的一个子群

前言:仅个人小记。这个性质是循环群的独有的。证明内容循环群G的阶为 n, 对任意 n 的因子 d ,即 d|n,都存在一个 唯一的d 阶子群 H。证明循环群 G 的生成元记为 g, 群阶记为 n。引入集合 Zn=0,1,...,n−1Z_n={0,1,...,n-1}Zn​=0,1,...,n−1第一部分引入G的一个子集H, H={x∣xd=1,x∈G}H=\{x|x^d=1,x\i...

2019-12-15 10:15:03 5208 1

原创 RSA中 底数m和模数 n 不互素是仍然成立

前言:仅个人小记。 注意到 RSA 中并不要求消息 m 要和模数 n 互素,而 RSA 所依赖的“费马定理,欧拉定理”,仿佛都要要求 m 须和模数 n 互素。这里给出针对 RSA 中 n 为两个素数乘积时的具体解释,实际上应归属于广义的欧拉定理,这里暂不讨论广义的欧拉定理。前要知识普通版的欧拉定理 aφ(m)%m≡1,其中a⊥m,φ(⋅)是欧拉函数{a}^{\varphi(m)} \%m\...

2019-11-19 14:52:51 3453 3

原创 隐私保护问题

OT: 小陶买旅行社资料问题姚氏百万富翁问题:2.1 http://zhiqiang.org/cs/yao-millionaires-problem.html2.2 论文 Protocols for Secure Computations三角形 多方安全通信加密电路...

2019-11-17 22:55:25 769

原创 要想绝对保密,必须密钥个数大于明文个数

前言:仅个人小记。前要知识和约定明文空间MMM,密钥空间KKK,密文空间CCC.∣M∣|M|∣M∣表示明文空间的大小,即明文的个数;∣K∣|K|∣K∣表示密钥空间的大小,即密钥的总个数;加密机制正确性,指的是,用给定的密钥解密任意一个密文的时候,明文是唯一确定的。给定一个密钥 k, 我们可以生成一张明文密文对照表,显然所有的明文参与,同时同一张表中,为了保持加密机制的正确性,必然所有的...

2019-11-07 23:57:47 1588

原创 中国剩余定理逻辑简述

前言:仅个人小记。中国剩余定理CRT和拉格朗日插值如出一辙。问题n≡r1(mod m1)n≡r1(mod m2)...n≡r1(mod mk)n\equiv r_1(mod \ m_1)\\ n\equiv r_1(mod \ m_2)\\.\\.\\.\\n\equiv r_1(mod \ m_k)n≡r1​(mod m1​)n≡r1​(mo...

2019-11-05 10:18:58 409

原创 拉格朗日插值

前言:仅个人小记。纯粹讨论拉格朗日插值内容,其思想其实简洁。本意是从一个 n 次一元多项式上任取 n+1 个不同的点,如果能拿到这 n+1 个点,则根据这 n+1 个点反推出原始的 n 次一元多项式。n 次一元多项式如下:f(x)=a0+a1x+a2x2+...+anxn=∑i=0naixif(x)=a_0+a_1x+a_2x^2+...+a_nx^n=\sum_{i=0}^{n}a_ix^if...

2019-11-04 22:33:43 805

原创 盲签名

前言:仅个人小记。

2019-10-06 19:19:39 1015 3

原创 离散对数困难问题为什么不能用二分法发动攻击

前言:仅个人小记。只是一个小讨论,之前没有考虑过这个问题,故而记之。解答离散对数困难问题是基于循环群的,循环群中的元素不再存在显式的大小关系,而二分法的使用是基于存在大小关系的,故而无法借助二分法发动攻击。举例:整数循环群是因为引入了模运算,进而打乱了原有的数字之间的大小关系,即原来必然有 gi<gi+1g^i<g^{i+1}gi<gi+1,但经过模运算处理后,gi&nb...

2019-10-02 09:53:35 931

原创 有限群元素的阶必然存在

前言:仅个人小记。即证明有限群中的元素必然可以通过自乘达到幺元。证明对于有限群 G, ∀a∈G\forall a\in G∀a∈G,元素 a 的阶都存在。元素自乘序列如下;a,a2,a3,...a,a^2,a^3,...a,a2,a3,...因为 G 是一个群,所以根据封闭性必然有 ai∈Ga^i \in Gai∈G又因为群 G 是有限的,所以必然有ai=aj,i<ja^i=a^j,i...

2019-09-29 11:22:47 7234 1

原创 循环群的子群、群阶因子、元素阶

前言:仅个人小记。讨论内容子群的阶必然为群阶的因子,这一点由群论中的拉格朗日定理已经知道,不必再详细讨论。循环群 G 的群阶 n 的因子 d 必然相应一个子群,该子群的阶就等于 d,即群论中拉格朗日定理的逆在循环群中成立。循环群 G 中, 阶为 d 的元素必然共有 φ(d)\varphi(d)φ(d) 个,d 是群阶 n 的因子。循环群 G 中,根据阶不同,对所有元素进行划分,引出定...

2019-09-29 11:09:52 20186 1

原创 循环群的子群必然还是循环群

前言:仅个人小记。我们知道群中任意一个元素都可以通过自乘形成循环群,但是循环群的子群难道也必然是循环群吗?也就是说循环群的子群也必然是由某个元素生成的循环群?也就是说,循环群的子群只可能是那些由元素自乘生成的循环群!借助拓展欧几里得算法来实施证明。前要知识拓展欧几里得算法,交代必然存在整数 m,n 使得证明内容循环群的子群必然还是循环群。证明设循环群 G , 生成元为 g,群阶 ...

2019-09-29 09:28:09 23841 7

原创 循环群阶的关系 ord(a^k)=ord(a)/(ord(a),k)

前言:仅个人小记。元素 a 的阶,即元素 a 形成的循环群的阶,即 ord(a)=||。求 ord(ak)ord(a^k)ord(ak)。非严格证明(从最小公倍数入手)ord(ak)=[ord(a),k]k=ord(a)∗k(ord(a),k)k=ord(a)ord(a,k)ord(a^k)=\frac{[ord(a),k]}{k}=\frac{\frac{ord(a)*k}{(ord...

2019-09-20 09:53:52 5023

原创 若a,b互素,则a必然存在模b的逆元;若a,b不互素,则a必然不存在模b的逆元

前言:仅个人小记。在证明,模 m 乘法群形式是唯一的 这个过程中需要用到这两条性质,故而记录之。证明内容若a,b互素,则a必然存在模b的逆元。证明过程直接参看,若正整数a,b互素,则必然存在b以内的正整数k,使得ak%b=1若a,b不互素,则a必然不存在模b的逆元。证明第2条若a,b不互素,则a必然不存在模b的逆元反证法:假设 (a,b)>1,存在整数k,使得ak=1(mo...

2019-09-20 09:06:01 2725

原创 最小公倍数与质因标准分解理论

前言:仅个人小记。在证明 Zp∗Z_p*Zp​∗是一个循环群的过程中,用到了这条性质,故而在此记录该小证明。简言之就是,显然素因子不可能是来自多个元素组合而形成的,因为素因子根本就不可组合,而素因子的幂也是不可能是来自多个元素组合而形成的,即必有元素包含该素因子的幂。证明内容D为 d1,d2,...,dmd_1,d_2,...,d_md1​,d2​,...,dm​ 的最小公倍数,记为如下D=...

2019-09-20 08:46:01 319

原创 n 以内与 n 互素的元素集合必然形成一个循环群

前言:仅个人小记。一直知道 ,对于素数 p,Zp∗={1,2,...,p−1}Z_p^*=\{1,2,...,p-1\}Zp∗​={1,2,...,p−1}是一个循环群,并且一直在使用这个性质(比如欧拉定理,费马定理,生成元的使用),但却不知道 Zp∗Z_p^*Zp∗​为什么是一个循环群。Zp∗Z_p^*Zp∗​ 是由素数 p 形成的特例,而本文的证明是直接针对具有普遍性质的数字 n 来实施证明的...

2019-09-18 12:02:46 1286 1

郝斌老师-sql-server-2005数据库大纲.doc

数据库学习大纲 什么是数据库 狭义: 存储数据的仓库 广义: 可以对数据进行存储和管理的软件以及数据本身统称为数据库 数据库是由表、关系、操作组成 为什么需要数据库 几乎所有的应用软件的后台都需要数据库 数据库存储数据占用空间小容易持久保存 存储比较安全 容易维护和升级 数据库移植比较容易 简化对数据的操作 为将来学习Oracle做准备 B/S架构里面包含数据库

2019-09-16

俄罗斯方块(Qt实现)

使用Qt开发的俄罗斯方块,功能齐全,界面个人觉得还不错

2016-12-22

进程模拟程序

《操作系统教程》 电子工业出版社 ******************************************** 进程演示系统 ******************************************** 1.创建新的进程 2.查看运行进程 3.换出某个进程 4.杀死运行进程 5.进程之间通信 6.退出系统 ******************************************** 请选择(~)

2016-10-11

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除