自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Zetaa的博客

邮箱:officeforcsdn@163.com

  • 博客(134)
  • 资源 (3)
  • 收藏
  • 关注

原创 线性不可分SVM 软间隔

前言:仅个人小记。参看https://blog.csdn.net/qq_25847123/article/details/108058804。线性不可分大部分样本线性可分,总体线性不可分。 引入松弛变量某些样本点不能满足函数间隔大于等于 111 这个约束条件,软间隔策略就是对每个样本点引入一个松弛变量 ξ≥0\xi\geq 0ξ≥0。是的函数间隔加上松弛变量是大于等于 111 的。此时,之前硬间隔最大化中的约束条件更变为yi(w⋅xi+b)≥1−ξiy_i(\boldsymbol{w}\cdot

2020-08-17 19:31:59 95

原创 线性可分支持向量机 对偶性形式求解

前言:仅个人小记。不论是对偶还是原问题形式,都是转成二次规划问题,编程角度上来看没太大差别。但从理论角度来看,对偶性形式能够直接凸显出“内积”形式,进而可以很好地引入“核”概念。经过一系列的变换,得到对偶最优化问题为对偶形式min⁡α12∑i=1N∑i=1Nαiαjyiyj(xixj)−∑i=1Nαis.t.∑i=1Nαiyi=1αi≥0,i=1,2,...,N\min_{\alpha}\frac{1}{2}\sum_{i=1}^{N}\sum_{i=1}^{N}\alpha_i\alpha_jy_i

2020-08-17 16:40:56 99

原创 线性可分支持向量机 凸二次规划解决原问题 python

前言:仅个人小记。问题来自李航的《统计学习方法》第二版中例题 7.1。问题如图,支持向量机的训练数据集为:正例点为 x1=(3,3),x2=(4,3)x_1=(3,3),x_2=(4,3)x1​=(3,3),x2​=(4,3),负例点为 x3=(1,1)x_3=(1,1)x3​=(1,1),求最大间隔分离超平面。最大间隔法输入: 线性可分训练数据集 T=(x1,y1),(x2,y2),...,(xN,yN)T={(x_1,y_1),(x_2,y_2),...,(x_N,y_N)}T=(x1​,y

2020-08-17 15:06:28 194

原创 python 的 None 不能对外部变量初始化

注:仅个人小记。python 中使用外部变量时候,在对全局变量初始化时,不能使用 None 进行初始化,None 表示空对象,在使用 None 变量初始化时候不会有对象产生。def f(): a = 100 returndef g(): print(a) return a = Nonef() # 并没能对外部变量 a 进行初始化 g() # 打印结果仍然为 None...

2020-07-12 20:48:18 101

原创 Spyder 脚本不能直接访问variable explorer 中已有的变量

很多时候需要在脚本代码中直接使用 Variable Explorer 中已有的变量,这是很方便的(虽然偶尔也会导致一些小问题)。最近更新了Spyder,这个功能没有了,不能正常访问。本文给出设置该功能的方法。...

2020-06-20 20:01:13 707 1

原创 Anaconda 安装第三方包 libsvm liblinear

前言:似乎直接使用 anaconda Navigator 或者使用 conda 安装 libsvm无效,故而转而手动安装,安装步骤非常简洁。安装 libsvm 和安装 liblinear 方法完全相同,下面只以为anaconda手动安装 liblinear 为例进行描述。下载 libsvm 和 liblinear打开 liblinear 压缩包并将 windows 文件夹中的 dll 文件拷贝至某个系统目录在 anaconda Lib site-packages 目录下新建文件夹并命名libli

2020-06-11 23:41:20 290

原创 Python 绘制椭圆 平移 旋转

前言:使用极坐标系描述起来似乎更加方便。效果目的椭圆公式演变直角坐标形式x2a2+y2b2=1\frac{x^2}{a^2}+\frac{y^2}{b^2}=1a2x2​+b2y2​=1极坐标形式x=acosθy=bcosθx=acos\theta\\y=bcos\thetax=acosθy=bcosθ纯粹平移:右移 sxs_xsx​,上移 sys_ysy​,得到xx=x+sxyy=y+syx_x=x+s_x\\y_y=y +s_yxx​=x+sx​yy​=y+sy​纯粹旋转:

2020-05-31 21:41:30 376

原创 kmeans初始中心不同结果可能不同 (举例)

本文给出 kmeans算法当初始中心点不同时,聚类结果可能是不同的实际例子。样例数据数据为101010个二维数据点,如下2,21,11,0240,100,1110,1212,1010,011,02, 2\\1 ,1\\1, 0\\2 4\\0, 10\\0, 11\\10, 12\\12, 10\\10, 0\\11, 0\\ 2,21,11,0240,100,1110,1212,1010,011,0第一次选择初始中心点以以下四个点作为初始中心点,进行k=4k=4k=4的kmea

2020-05-31 16:01:01 1075

原创 二维list 不同长度列表 初始化 (Python)

前言:初始化一个空的二维列表,二维列表由多个列表构成。注意:Python list使用时,a=[ ]*3,只是在复制引用(只是浅拷贝),只有在修改 a[i] 这个对象时,才会为 a[i] 重新分配内存,实现深拷贝。目标生成 [[],[],[]]错误方法(浅拷贝)a = [[]]*3# 表示对 [] 里面的元素,即也是一个列表,并且是空列表 []进行三倍的复制# 得到结果为 [ [] , [] , [] ]# 但这是三个完全相同的list ,他们指向同一个地址# 而 a[i].append

2020-05-31 13:13:04 535

原创 组合数元组编号

前言:仅个人小记。问题描述如何遍历nnn个点中的所有444元组呢,即如何遍历(n4)\binom{n}{4}(4n​)个不同的四元组呢?举例:n=6n=6n=6,则所有的444元组共有(64)=15\binom{6}{4}=15(46​)=15个,具体为(1,2,3,4)(1,2,3,5)(1,2,3,6)(1,2,4,5)(1,2,4,6)(1,2,5,6)(1,3,4,5)(1,3,4,6)(1,3,5,6)(1,4,5,6)(2,3,4,5)(2,3,4,6)(2,4,5,6)(3,4,5,6)

2020-05-20 20:24:25 87

原创 简述 index calculus 算法

前言:仅个人小记。index calculus 本质上还是蛮力计算,不过这个蛮力相对于普通的蛮力更加优雅有效,但仍然是指数级别,可以称之为亚指数时间复杂。前提交代域FpF_pFp​,生成元为 b。b为底数,ind(a)ind(a)ind(a)表示以 b 为的 a 的离散对数。挑一个值S,找出小于S的所有素数,构成一个基组AA={p1,p2,...,pk}A=\{p_1,p_2,...,p...

2020-01-09 16:08:44 391

原创 度为n的不可约多项式和Fp^n 这个域的关系

前言:仅个人小记。域FpF_pFp​,p是素数。域FpnF_{p^n}Fpn​是域FpF_pFp​的扩域,即Fp<FpnF_p<F_{p^n}Fp​<Fpn​。f(x)∈Fp[x]={Σi=0naixi,ai∈Fp},其中n不受限制f(x)\in F_p[x]=\{\Sigma_{i=0}^na_ix^i,a_i\in F_p\},其中n不受限制f(x)∈Fp​[x]={Σ...

2020-01-09 13:10:16 179

原创 计算不可约多项式的阶

前言:仅个人小记。这里直接讨论不可约多项式,仅简要交代计算不可约多项式的阶基本方法。具体还是要枚举。以例子作为说明计算p(x)=x4+x+1p(x)=x^4+x+1p(x)=x4+x+1在域F2F_2F2​上的阶。记p(x)p(x)p(x)的阶为 v。事实一:p(x)∣xv−1p(x)|x^v-1p(x)∣xv−1。事实二:v∣qd−1v|q^d-1v∣qd−1。其中,q是域的特征,d是...

2020-01-09 11:12:15 324 1

原创 Frobenius自同构

前言:仅个人小记。前要知识:aj≡i mod naj\equiv i\ mod\ naj≡i mod n,当a⊥na\perp na⊥n时,j 有唯一解。域F,域F的特征为char(F)=pchar(F)=pchar(F)=p,p为素数。域的元素个数必然为p的幂次方,记为 pnp^npn。相应的域中乘法群的阶为pn−1p^n-1pn−1。Frob...

2020-01-07 19:42:29 407

原创 自盲化能力 Paillier和EIGamal

前言:仅个人小记。记录两个具有自盲化能力的加密体制。所谓自盲化,指的是对密文进行随机化操作,操作后得到新密文,对新旧密文的解密结果相同。因为随机化,故而敌手无法判定新密文是否对应着原来的明文。这里只是简要交代盲化方法,不对其他细节进行严格表述。Paillier 加密体制自盲化给定一个Paillier 密文,公钥为 N,c=(1+N)mrN modN2c=(1+N)^mr^N\ mo...

2020-01-05 16:12:15 255

原创 牛顿恒等式 牛顿和

前言:仅个人小记。该恒等式推导逻辑非常简洁。目标,求一个多项式的所有根的次幂和。比如多项式P(x)=Σi=0naixiP(x)=\Sigma_{i=0}^{n}a_i x^iP(x)=Σi=0n​ai​xi的根为 α,β,...,ω\alpha,\beta,...,\omegaα,β,...,ω,现在希望求得Pk=αk+βk+...+ωkP_k=\alpha^k+\beta^k+...+\omeg...

2020-01-05 00:30:38 858

原创 有限域的乘法群一定是循环群

前言:仅个人小记暂先交代证明的基本思路:因为是有限域,所以必然是整环,所以必然无零因子,进而度公式必然满足,即 deg(fg)=deg(f)+deg(g)deg(fg)=deg(f)+deg(g)deg(fg)=deg(f)+deg(g),xn=1x^n=1xn=1的不同根最多有 n 个(可以结合度公式采用反证法进行说明),同时xn−1=1x^{n-1}=1xn−1=1的不同根最多只有 n-1...

2019-12-15 10:30:51 1849

原创 循环群的阶每一个因子都对应唯一的一个子群

前言:仅个人小记。这个性质是循环群的独有的。证明内容循环群G的阶为 n, 对任意 n 的因子 d ,即 d|n,都存在一个 唯一的d 阶子群 H。证明循环群 G 的生成元记为 g, 群阶记为 n。引入集合 Zn=0,1,...,n−1Z_n={0,1,...,n-1}Zn​=0,1,...,n−1第一部分引入G的一个子集H, H={x∣xd=1,x∈G}H=\{x|x^d=1,x\i...

2019-12-15 10:15:03 999

原创 RSA中 底数m和模数 n 不互素是仍然成立

前言:仅个人小记。 注意到 RSA 中并不要求消息 m 要和模数 n 互素,而 RSA 所依赖的“费马定理,欧拉定理”,仿佛都要要求 m 须和模数 n 互素。这里给出针对 RSA 中 n 为两个素数乘积时的具体解释,实际上应归属于广义的欧拉定理,这里暂不讨论广义的欧拉定理。前要知识普通版的欧拉定理 aφ(m)%m≡1,其中a⊥m,φ(⋅)是欧拉函数{a}^{\varphi(m)} \%m\...

2019-11-19 14:52:51 791

原创 隐私保护问题

OT: 小陶买旅行社资料问题姚氏百万富翁问题:2.1 http://zhiqiang.org/cs/yao-millionaires-problem.html2.2 论文 Protocols for Secure Computations三角形 多方安全通信加密电路...

2019-11-17 22:55:25 155

原创 要想绝对保密,必须密钥个数大于明文个数

前言:仅个人小记。前要知识和约定明文空间MMM,密钥空间KKK,密文空间CCC.∣M∣|M|∣M∣表示明文空间的大小,即明文的个数;∣K∣|K|∣K∣表示密钥空间的大小,即密钥的总个数;加密机制正确性,指的是,用给定的密钥解密任意一个密文的时候,明文是唯一确定的。给定一个密钥 k, 我们可以生成一张明文密文对照表,显然所有的明文参与,同时同一张表中,为了保持加密机制的正确性,必然所有的...

2019-11-07 23:57:47 348

原创 中国剩余定理逻辑简述

前言:仅个人小记。中国剩余定理CRT和拉格朗日插值如出一辙。问题n≡r1(mod m1)n≡r1(mod m2)...n≡r1(mod mk)n\equiv r_1(mod \ m_1)\\ n\equiv r_1(mod \ m_2)\\.\\.\\.\\n\equiv r_1(mod \ m_k)n≡r1​(mod m1​)n≡r1​(mo...

2019-11-05 10:18:58 94

原创 拉格朗日插值

前言:仅个人小记。纯粹讨论拉格朗日插值内容,其思想其实简洁。本意是从一个 n 次一元多项式上任取 n+1 个不同的点,如果能拿到这 n+1 个点,则根据这 n+1 个点反推出原始的 n 次一元多项式。n 次一元多项式如下:f(x)=a0+a1x+a2x2+...+anxn=∑i=0naixif(x)=a_0+a_1x+a_2x^2+...+a_nx^n=\sum_{i=0}^{n}a_ix^if...

2019-11-04 22:33:43 127

原创 盲签名

前言:仅个人小记。

2019-10-06 19:19:39 507

原创 离散对数困难问题为什么不能用二分法发动攻击

前言:仅个人小记。只是一个小讨论,之前没有考虑过这个问题,故而记之。解答离散对数困难问题是基于循环群的,循环群中的元素不再存在显式的大小关系,而二分法的使用是基于存在大小关系的,故而无法借助二分法发动攻击。举例:整数循环群是因为引入了模运算,进而打乱了原有的数字之间的大小关系,即原来必然有 gi<gi+1g^i<g^{i+1}gi<gi+1,但经过模运算处理后,gi&nb...

2019-10-02 09:53:35 221

原创 有限群元素的阶必然存在

前言:仅个人小记。即证明有限群中的元素必然可以通过自乘达到幺元。证明对于有限群 G, ∀a∈G\forall a\in G∀a∈G,元素 a 的阶都存在。元素自乘序列如下;a,a2,a3,...a,a^2,a^3,...a,a2,a3,...因为 G 是一个群,所以根据封闭性必然有 ai∈Ga^i \in Gai∈G又因为群 G 是有限的,所以必然有ai=aj,i<ja^i=a^j,i...

2019-09-29 11:22:47 1790

原创 循环群的子群、群阶因子、元素阶

前言:仅个人小记。讨论内容子群的阶必然为群阶的因子,这一点由群论中的拉格朗日定理已经知道,不必再详细讨论。循环群 G 的群阶 n 的因子 d 必然相应一个子群,该子群的阶就等于 d,即群论中拉格朗日定理的逆在循环群中成立。循环群 G 中, 阶为 d 的元素必然共有 φ(d)\varphi(d)φ(d) 个,d 是群阶 n 的因子。循环群 G 中,根据阶不同,对所有元素进行划分,引出定...

2019-09-29 11:09:52 4003

原创 循环群的子群必然还是循环群

前言:仅个人小记。我们知道群中任意一个元素都可以通过自乘形成循环群,但是循环群的子群难道也必然是循环群吗?也就是说循环群的子群也必然是由某个元素生成的循环群?也就是说,循环群的子群只可能是那些由元素自乘生成的循环群!借助拓展欧几里得算法来实施证明。前要知识拓展欧几里得算法,交代必然存在整数 m,n 使得证明内容循环群的子群必然还是循环群。证明设循环群 G , 生成元为 g,群阶 ...

2019-09-29 09:28:09 5758

原创 循环群阶的关系 ord(a^k)=ord(a)/(ord(a),k)

前言:仅个人小记。元素 a 的阶,即元素 a 形成的循环群的阶,即 ord(a)=||。求 ord(ak)ord(a^k)ord(ak)。非严格证明(从最小公倍数入手)ord(ak)=[ord(a),k]k=ord(a)∗k(ord(a),k)k=ord(a)ord(a,k)ord(a^k)=\frac{[ord(a),k]}{k}=\frac{\frac{ord(a)*k}{(ord...

2019-09-20 09:53:52 649

原创 若a,b互素,则a必然存在模b的逆元;若a,b不互素,则a必然不存在模b的逆元

前言:仅个人小记。在证明,模 m 乘法群形式是唯一的 这个过程中需要用到这两条性质,故而记录之。证明内容若a,b互素,则a必然存在模b的逆元。证明过程直接参看,若正整数a,b互素,则必然存在b以内的正整数k,使得ak%b=1若a,b不互素,则a必然不存在模b的逆元。证明第2条若a,b不互素,则a必然不存在模b的逆元反证法:假设 (a,b)>1,存在整数k,使得ak=1(mo...

2019-09-20 09:06:01 637

原创 最小公倍数与质因标准分解理论

前言:仅个人小记。在证明 Zp∗Z_p*Zp​∗是一个循环群的过程中,用到了这条性质,故而在此记录该小证明。简言之就是,显然素因子不可能是来自多个元素组合而形成的,因为素因子根本就不可组合,而素因子的幂也是不可能是来自多个元素组合而形成的,即必有元素包含该素因子的幂。证明内容D为 d1,d2,...,dmd_1,d_2,...,d_md1​,d2​,...,dm​ 的最小公倍数,记为如下D=...

2019-09-20 08:46:01 64

原创 n 以内与 n 互素的元素集合必然形成一个循环群

前言:仅个人小记。一直知道 ,对于素数 p,Zp∗={1,2,...,p−1}Z_p^*=\{1,2,...,p-1\}Zp∗​={1,2,...,p−1}是一个循环群,并且一直在使用这个性质(比如欧拉定理,费马定理,生成元的使用),但却不知道 Zp∗Z_p^*Zp∗​为什么是一个循环群。Zp∗Z_p^*Zp∗​ 是由素数 p 形成的特例,而本文的证明是直接针对具有普遍性质的数字 n 来实施证明的...

2019-09-18 12:02:46 186

原创 生日悖论

前言:仅个人小记。假定一年 365 天,且不考虑年份,班上 31 个人。问:出现与我出生日期相同的同学的概率为多大?(内部人员视角)1−(364365)30=1−0.9210=0.0790≈8%1-({\frac{364}{365}})^{30}=1-0.9210=0.0790\approx 8\%1−(365364​)30=1−0.9210=0.0790≈8%问:班上出现生日相同的同学的...

2019-09-16 07:49:05 58

原创 拓展欧几里德进一步求一次同余式

前言:仅个人小记。之前就介绍了拓展欧几里德算法并给出用拓展欧几里得算法求解乘法逆元的方法,这里,将求解的问题更加一般化,即求解一次同余式。前要知识a, b 的最大公约数记 gcd(a,b) 记为 (a,b)。给定整数 a, b, 必有 a(a,b)⊥b(a,b)\frac{a}{(a,b)} \perp \frac{b}{(a,b)}(a,b)a​⊥(a,b)b​。问题描述给定一次同...

2019-09-15 13:52:57 61

原创 拓展欧几里得算法求乘模逆元

前言:仅个人小记。之前已经证明了 “若正整数a,b互素,则必然存在b以内的正整数k,使得ak%b=1” 成立。本文进一步借助 拓展欧几里得算法,给出快速求解 k 值的方法,即求解乘法逆元的方法,具体多快?时间复杂度为O(log(b))....

2019-09-09 20:10:07 422

原创 拓展欧几里得算法

前言:仅个人小记。欧几里得算法只是给出了求解 a, b 最大公约数的方法。而拓展欧几里得算法中,在完全利用欧几里得算法的过程中,求解出 a, b 的最大公约数,同时还得到一组 (x,y) 使得 ax+by=gcd(a,b)ax+by=gcd(a,b)ax+by=gcd(a,b) 成立。这个式子在求解“乘模逆元”中可以用作提速,具有十分重要的意义。拓展欧几里得算法内容我们希望求解 (x,y) a...

2019-09-09 20:06:17 88

原创 素数阶群必为循环群

前言:仅个人小记。素数阶群必为循环群,这个性质很重要,尤其是在密码学中,我们总是引入素数阶的群,这个性质保证了我们引入的群具有循环群的一切特征,包括交换性、具有生成元。前要知识群论中的拉格朗日定理(子群的阶必然能整除群阶) 。参看 https://blog.csdn.net/qq_25847123/article/details/100318620素数 p 以内的正整数都与 p 互质。素...

2019-09-06 09:16:39 5621 1

原创 群论中的拉格朗日定理(子群的阶必然能整除群阶)

前言:仅个人小记。本文记录的证明逻辑上不具有流畅性,主要是在一开始不流畅,拉格朗日神乎其技地引入了一个等价关系,进而实现了整个定理的证明,目前我没能给出拉格朗日是如何想到引入该等价关系。前要知识等价关系 R 中,元素 a 的等价类,即该等价关系中所有第一个元素是 a 的序偶相应的第二个元素 b 形成的集合。定理内容设 &lt;H,∗&gt;&lt;H,*&amp...

2019-09-02 18:13:10 4896

原创 伯恩赛德定理(集合S的 置换群 诱导出来的等价关系 对集合S 划分 得到的 等价类个数)

前言:仅个人小记。定理内容由 S 的置换群 <G, >

2019-09-02 16:51:19 639

原创 置换群诱导出的二元关系必然是一个等价关系

前言:仅个人小记。辅助于伯恩赛德定理的证明。证明内容由集合 S 上的一个置换群 &lt;G,∗&gt;&lt;G,*&gt;<G,∗>诱导的二元关系 R是一个等价关系 ,诱导二元关系 R 定义如下R={&lt;a,b&gt;∣π(a)=b,π∈G}R=\{&lt;a,b&gt;|\pi(a)=b,\pi\in G\}R...

2019-09-02 13:38:48 231

郝斌老师-sql-server-2005数据库大纲.doc

数据库学习大纲 什么是数据库 狭义: 存储数据的仓库 广义: 可以对数据进行存储和管理的软件以及数据本身统称为数据库 数据库是由表、关系、操作组成 为什么需要数据库 几乎所有的应用软件的后台都需要数据库 数据库存储数据占用空间小容易持久保存 存储比较安全 容易维护和升级 数据库移植比较容易 简化对数据的操作 为将来学习Oracle做准备 B/S架构里面包含数据库

2019-09-16

俄罗斯方块(Qt实现)

使用Qt开发的俄罗斯方块,功能齐全,界面个人觉得还不错

2016-12-22

进程模拟程序

《操作系统教程》 电子工业出版社 ******************************************** 进程演示系统 ******************************************** 1.创建新的进程 2.查看运行进程 3.换出某个进程 4.杀死运行进程 5.进程之间通信 6.退出系统 ******************************************** 请选择(~)

2016-10-11

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除