一、概述
- 线性表是n个类型相同数据元素的有限序列,通常记作(a0, a1, a2 , ..., a(n-1))。
- 线性表特征:相同的数据类型、序列(顺序性)、有限。
- 生活案例:冰糖葫芦、多个学生分数、多个学生数据。
二、线性表的存储结构
顺序表
特点:在内存中分配连续的空间,只存储数据,不需要存储地址信息。位置就隐含着地址。
优点:
- 节省存储空间,因为分配给数据的存储单元全用存放结点的数据(不考虑c/c++语言中数组需指定大小的情况),结点之间的逻辑关系没有占用额外存储空间。
- 索引查号效率高,既每一个结点对应一个序号,由该序号可以直接计算出来结点的存储地址。
假设线性表的每个数据元素需占用K个存储单元,并以元素所占的第一个存储单元的地址作为数据元素的存储地址。则线性表中序号为i的数据元素的存储地址LOC(ai)与序号为(i+1)的数据元素的存储地址LOC(a(i+1))之间的关系为: LOC(a(i+1)) = LOC(ai)+K。 通常来说,线性表的i号元素ai的存储地址为: LOC(ai)=LOC(a0)+ixK, 其中LOC(a0)为0号元素a0的存储地址,通常称为线性表的起始地址。 线性表的查询时间复杂度: 查询第1个元素的次数是1 查询第2个元素的次数是2 ... 查询第n-1个元素的次数是n-1 查询第n个元素的次数是n 概率相同,每个元素的概率是1/n (1+2+3+...+n)*1/n = 1n/2 + 1/2 T(n) = O(n)
缺点:
- 插入和删除操作需要移动元素,效率低。
- 必须提前分配固定数量的空间,如果存储元素少,可能导致空间浪费。
- 按照内容查询效率低,应为需要逐个比较判断
举例:长度为n的数组中删除元素,假设每个元素删除的概率是相同的,问时间复杂度是?
删除第n个元素,需要移动0个元素
删除第n-1个元素,需要移动1个元素
删除第n-2个元素,需要移动2个元素
...
删除第2个元素,需要移动n-2个元素
删除第1个元素,需要移动n-1个元素
所以平均时间频度是:(0+1+2+...+(n-1))*1/n = (n-1)*n/2 * 1/n = 1n/2 - 1/2
T(n) = (n-1)/2
T(n) = O(n)
链式表
特点:
- 数据元素的存储对应的是不连续的存储空间,每个存储结点对应一个需要存储的数据元素。
- 每个结点是由数据域和指针域组成,元素之间的逻辑关系通过存储节点之间的链接关系反映出来。
- 逻辑上相邻的结点物理上不必相邻。
优点:
- 插入、删除灵活(不必移动结点,只要改变结点中的指针,但是需要先定位到元素上)。
- 有元素才回去分配结点空间,不会有闲置的结点。
缺点:
- 比顺序存储结构的存储密度小(每个结点都由数据域和指针域组成,所以相同空间内假设全存满的话,顺序比链式存储更多)。
- 查找结点时链式存储要比顺序存储慢(每个结点地址不连续,无规律,导致按照索引查询效率低下)。