数据结构与算法-线性表

一、概述

  • 线性表是n个类型相同数据元素的有限序列,通常记作(a0, a1, a2 , ..., a(n-1))。
  • 线性表特征:相同的数据类型、序列(顺序性)、有限。
  • 生活案例:冰糖葫芦、多个学生分数、多个学生数据。

二、线性表的存储结构

顺序表

特点:在内存中分配连续的空间,只存储数据,不需要存储地址信息。位置就隐含着地址。

优点:

  1. 节省存储空间,因为分配给数据的存储单元全用存放结点的数据(不考虑c/c++语言中数组需指定大小的情况),结点之间的逻辑关系没有占用额外存储空间。
  2. 索引查号效率高,既每一个结点对应一个序号,由该序号可以直接计算出来结点的存储地址。
    假设线性表的每个数据元素需占用K个存储单元,并以元素所占的第一个存储单元的地址作为数据元素的存储地址。则线性表中序号为i的数据元素的存储地址LOC(ai)与序号为(i+1)的数据元素的存储地址LOC(a(i+1))之间的关系为:
        LOC(a(i+1)) = LOC(ai)+K。
    通常来说,线性表的i号元素ai的存储地址为:
        LOC(ai)=LOC(a0)+ixK,
    其中LOC(a0)为0号元素a0的存储地址,通常称为线性表的起始地址。
    
    线性表的查询时间复杂度:
        查询第1个元素的次数是1    
        查询第2个元素的次数是2
        ...
        查询第n-1个元素的次数是n-1
        查询第n个元素的次数是n
        概率相同,每个元素的概率是1/n
        (1+2+3+...+n)*1/n = 1n/2 + 1/2
    T(n) = O(n)

     

缺点:

  1. 插入和删除操作需要移动元素,效率低。
  2. 必须提前分配固定数量的空间,如果存储元素少,可能导致空间浪费。
  3. 按照内容查询效率低,应为需要逐个比较判断

   

举例:长度为n的数组中删除元素,假设每个元素删除的概率是相同的,问时间复杂度是?
    删除第n个元素,需要移动0个元素
    删除第n-1个元素,需要移动1个元素
    删除第n-2个元素,需要移动2个元素
    ...
    删除第2个元素,需要移动n-2个元素
    删除第1个元素,需要移动n-1个元素
所以平均时间频度是:(0+1+2+...+(n-1))*1/n = (n-1)*n/2 * 1/n = 1n/2 - 1/2
T(n) = (n-1)/2
T(n) = O(n)

 

链式表

       

特点:

  • 数据元素的存储对应的是不连续的存储空间,每个存储结点对应一个需要存储的数据元素。
  • 每个结点是由数据域和指针域组成,元素之间的逻辑关系通过存储节点之间的链接关系反映出来。
  • 逻辑上相邻的结点物理上不必相邻。

优点:

  • 插入、删除灵活(不必移动结点,只要改变结点中的指针,但是需要先定位到元素上)。
  • 有元素才回去分配结点空间,不会有闲置的结点。

缺点:

  • 比顺序存储结构的存储密度小(每个结点都由数据域和指针域组成,所以相同空间内假设全存满的话,顺序比链式存储更多)。
  • 查找结点时链式存储要比顺序存储慢(每个结点地址不连续,无规律,导致按照索引查询效率低下)。

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值