Selective Search for Object Detection

Selective Search是一种优化物体检测中候选区域选择的方法,通过图像分割和层次算法适应不同尺度,实现多样化和快速计算。它通过Efficient Graph-Based Image Segmentation获取初始区域,然后通过相似度计算和区域合并策略找出可能的物体位置。
摘要由CSDN通过智能技术生成


物体检测中,在图像中找到确定一个物体,并找出具体位置。之前的主要做法是基于穷举搜索,或者说是暴力获取(Exhaustive Search),选择一个窗口(window)扫描整张图像(image),改变窗口的大小,继续扫描整张图像。显然这种做法是比较原始的,改变窗口的大小,扫描整张图像,直观上就给人一种非常耗时,结果太杂的印象。在2012年,作者提出了一种新的选出候选区域的方法能够从下面的3个方面优化候选区域问题

(1)  适应不同的尺度( Capture all scales ):Exhaustive selective 通过改变窗口大小来适应物体的不同尺度,选择搜索同样无法避免这个问题。算法采用了图像分割(Image Segmentation)以及一种层次算法(HierarchicalAlgorithm)有效地解决了这个问题

(2)  多样化(Diversification):单一的策略无法应对多种类别的图像。使用颜色(color)、纹理(texture)、大小(size)等多种策略对分割好的区域进行合并

(3)  速度快(Fast to Compute)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值