离散对数-BSGS算法

本文介绍了如何使用扩展大步小步法(BSGS算法)来解决离散对数问题。当给定ax ≡ b (mod m),且(m, a) = 1时,主要讨论了当m为质数的情况。通过将x表示为A⌈p⌉ + B的形式,预处理并按顺序枚举A,可以达到O(p+p)的时间复杂度。若需要对多个b求解,时间复杂度可优化为O(K+⌊kp⌋∗n)。" 113908681,10539464,使用MapReduce迁移MySQL数据,"['MySQL', 'Hadoop', 'MapReduce', '数据处理']
摘要由CSDN通过智能技术生成

口胡

参考:扩展大步小步法解决离散对数问题

离散对数主要是求解这样一类问题:

a x ≡ b ( m o d m ) a^x \equiv b \pmod m axb(modm) 大概就是 ( m o d m ) \pmod m (modm)意义下的对数

这里只考虑 ( m , a ) (m,a) (m,a)为1的情况。一般来说,给出的m是一个质数。

x = A ⌈ p ⌉ + B x = A \lceil \sqrt{p} \rceil + B x=Ap +B,其中 0 ≤ B &lt; ⌈ p ⌉ 0 \leq B &lt; \lceil \sqrt{p} \rceil 0B<p 0 ≤ A &lt; ⌈ p ⌉ 0 \leq A &lt; \lceil \sqrt{p} \rceil 0A<p 。则方程变成

a A ⌈ p ⌉ + B ≡ b ( m o d p ) a^{A\lceil \sqrt{p} \rceil + B} \equiv b \pmod p aAp +Bb(modp)
两边同时乘以 A ⌈ p ⌉ A \lceil \sqrt{p} \rceil Ap 的逆元,则方程变为
a B ≡ b ⋅ a − A ⌈ p ⌉ ( m o d p ) a^{B} \equiv b\cdot a^{-A\l

离散对数问题是计算一个数a模p的离散对数x,即满足a^x≡b(mod p)的最小非负整数x。Pohlig-Hellman算法是一种解离散对数问题的算法,具体实现如下: ``` #include<stdio.h> #include<math.h> int prime[100000]; int isprime[100001]; void get_prime(int n) { int cnt = 0; for(int i = 2;i <= n;i++) { if(isprime[i] == 0) { prime[++cnt] = i; } for(int j = 1;j <= cnt;j++) { if(prime[j] * i > n) { break; } isprime[prime[j] * i] = 1; if(i % prime[j] == 0) { break; } } } } long long pow_mod(long long a, long long b, long long p) { long long ans = 1; a %= p; while(b) { if(b & 1) { ans = ans * a % p; } b >>= 1; a = a * a % p; } return ans; } long long inv(long long a, long long p) { return pow_mod(a, p - 2, p); } long long exgcd(long long a, long long b, long long &x, long long &y) { if(b == 0) { x = 1; y = 0; return a; } long long d = exgcd(b, a % b, y, x); y -= (a / b) * x; return d; } long long bsgs(long long a, long long b, long long p) { long long m = ceil(sqrt(p)); long long mi = inv(pow_mod(a, m, p), p); long long aj = b; for(int j = 0;j < m;j++) { int i; for(i = 0;i < m;i++) { if(aj == prime[i]) { return i + j * m; } } aj = aj * mi % p; } return -1; } long long gcd(long long a, long long b) { return b == 0 ? a : gcd(b, a % b); } long long get_order(long long a, long long p) { long long phi = p - 1; long long tmp = phi; for(int i = 2;i * i <= tmp;i++) { if(tmp % i == 0) { while(tmp % i == 0) { tmp /= i; } long long t = pow_mod(a, phi / i, p); if(t == 1) { phi /= i; } while(t == 1) { t = pow_mod(a, phi / i, p); phi /= i; } } } if(tmp > 1) { long long t = pow_mod(a, phi / tmp, p); if(t == 1) { phi /= tmp; } while(t == 1) { t = pow_mod(a, phi / tmp, p); phi /= tmp; } } return phi; } long long crt(long long a1, long long p1, long long a2, long long p2) { long long x, y; exgcd(p1, p2, x, y); return (a1 * p2 * y % (p1 * p2) + a2 * p1 * x % (p1 * p2)) % (p1 * p2); } long long pohlig_hellman(long long a, long long b, long long p) { long long ord = get_order(a, p); long long m = ceil(sqrt(ord)); long long t = 1; for(int i = 0;i < m;i++) { t = t * a % p; } long long invt = inv(t, p); long long aj = b; for(int j = 0;j < m;j++) { int i; for(i = 0;i < m;i++) { if(aj == pow_mod(a, i, p)) { break; } } aj = aj * invt % p; if(i < m) { return j * m + i; } } long long x = 0; long long pp[100], aa[100]; int cnt = 0; for(int k = 2;k <= p;k++) { if(p % k == 0) { pp[++cnt] = 1; int tmp = p; while(tmp % k == 0) { tmp /= k; pp[cnt] *= k; } long long aa1 = pow_mod(a, ord / pp[cnt], p); long long bb1 = pow_mod(b, ord / pp[cnt], p); long long aj1 = 1; for(int j = 0;j < pp[cnt];j++) { if(aj1 == bb1) { x += (long long)j * pp[cnt] / pp[cnt - 1] * crt(1, pp[cnt - 1], aa[cnt - 1], pp[cnt - 1]); break; } aj1 = aj1 * aa1 % p; } aa[cnt] = aa1; } } return x % ord; } int main() { get_prime(100000); long long a, b, p; scanf("%lld%lld%lld", &a, &b, &p); printf("%lld\n", pohlig_hellman(a, b, p)); return 0; } ``` 注:在使用该代码时,需要输入三个参数a、b、p,其中a和p分别表示离散对数的底数和模数,b表示要求的离散对数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值