口胡
离散对数主要是求解这样一类问题:
a x ≡ b ( m o d m ) a^x \equiv b \pmod m ax≡b(modm) 大概就是 ( m o d m ) \pmod m (modm)意义下的对数
这里只考虑 ( m , a ) (m,a) (m,a)为1的情况。一般来说,给出的m是一个质数。
设 x = A ⌈ p ⌉ + B x = A \lceil \sqrt{p} \rceil + B x=A⌈p⌉+B,其中 0 ≤ B < ⌈ p ⌉ 0 \leq B < \lceil \sqrt{p} \rceil 0≤B<⌈p⌉, 0 ≤ A < ⌈ p ⌉ 0 \leq A < \lceil \sqrt{p} \rceil 0≤A<⌈p⌉。则方程变成
a A ⌈ p ⌉ + B ≡ b ( m o d p ) a^{A\lceil \sqrt{p} \rceil + B} \equiv b \pmod p aA⌈p⌉+B≡b(modp)
两边同时乘以 A ⌈ p ⌉ A \lceil \sqrt{p} \rceil A⌈p⌉的逆元,则方程变为
a B ≡ b ⋅ a − A ⌈ p ⌉ ( m o d p ) a^{B} \equiv b\cdot a^{-A\l