Windows11设置共享打印机

1.需要一台可以打印机,改打印机可以使用线缆或者其他通讯方式连接到一台需要共享的设备
2.需要一台安装win11的设备,通过上面的方式连接到打印机,并能正常的进行打印测试
具备1和2的基础条件后,我们就可以愉快的设置共享打印机拉
麻烦按照下面的步骤进行打印机的设置
1.打开win11的打印机机和扫描设置
在这里插入图片描述
在这里插入图片描述
2.选择要共享的打印机,打开打印机属性,进行打印机共享
在这里插入图片描述
3.从控制面板打开,控制面板\所有控制面板项\网络和共享中心\高级共享设置
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
4.查看公共共享打印机的ip地址,使用命令

ipconfig

在这里插入图片描述
5.如果网卡是无线网卡,找无线网卡的ipv4地址,有线网卡就找有线网卡的ipv4地址,在运行中输入这个IP地址
在这里插入图片描述
在这里插入图片描述

\\192.168.255.255

这个ip地址需要改成共享打印机里的ip地址
6.回车后提示需要输入密码,这里输入共享打印主机的用户名和密码就可以了,会展现网络打印机
在这里插入图片描述

在这里插入图片描述
7.进行连接

在这里插入图片描述
在这里插入图片描述
8.连接成功后,来到打印机和扫描仪

在这里插入图片描述

9.设置为默认打印机
在这里插入图片描述
10.进行打印页测试
在这里插入图片描述
通过上面的过程,大部分机器都可以进行打印了,win11相比于win10,它变了,从外形上变了,从账户策略上来讲,第6步输入共享打印机用户的账户和密码,不够安全,这个机器当前可能还有人在使用,如果密码共享给大家了,它就不安全了,因此我们需要创建一个用户

win11下创建一个用户
1.打开设置
在这里插入图片描述
在这里插入图片描述
2.进到管理账户页面,进行账户新增
在这里插入图片描述
在这里插入图片描述

3.新增一个账户,新增一个本地账户,联网很麻烦,稍微忍耐一下,它会磨磨唧唧的转圈圈
在这里插入图片描述
在这里插入图片描述
4.完善用户名密码,和三个问题,麻烦的三个问题,你需要忍耐
在这里插入图片描述
在这里插入图片描述
这样就可以在上面查找网络打印机的时候,使用这个创建的账户,优点是干净卫生

1注意,win11大部分都是家庭版本,处于为个人省电费和碳中和的角度,电源策略插电,过几分钟电脑进入休眠状态后,就不能完成打印任务,这个时候我们需要进行设置如下图
在这里插入图片描述
在这里插入图片描述
对于笔记本来说,会有使用电源和插入电源,对应的,我们需要在不同的场景下,更改为从不睡眠,这样打印机就可以一直工作了,屏幕策略默认就行,只要不休眠,屏幕关闭了也对打印服务没有影响

### YOLOv8 VFL Loss Function Formula 在YOLOv8中,VFL (Varifocal Loss) 是一种用于分类分支的损失函数,旨在解决类别不平衡问题并提高模型性能。该损失函数结合了质量感知机制和焦点损失的思想。 VFL 的定义如下: 对于二元分类情况下的 Varifocal Loss 可表示为: \[ L_{vf} = - \left( p_t^\gamma q_t^{(\beta)} \right) \log(p) \] 其中, - \(p\) 表示预测的概率; - \(q_t^{(\beta)}=\exp(-\beta|z_t-\hat{z}_t|^2)\),\(z_t\) 和 \(\hat{z}_t\) 分别代表真实标签分数和预测分数,而 \(\beta\) 控制着高斯核的标准差; - \(p_t=p^y+(1-p)^{(1-y)}\) ,这里 \(y\) 为ground truth label; 此公式允许网络更加关注难以区分的例子,并减少简单负样本的影响[^2]。 为了实现更有效的学习过程,特别是在处理大规模数据集时,这种类型的损失函数能够帮助优化器更快收敛至更好的局部极小值点。 ```python import torch.nn.functional as F def varifocal_loss(pred, target, beta=2.0, gamma=2.0): """ Calculate the Varifocal Loss between predictions and targets. Args: pred (Tensor): Predicted scores from model output. target (Tensor): Ground-truth labels or regression targets. beta (float): Controls Gaussian kernel standard deviation in quality focal loss term. gamma (float): Modulating factor to emphasize hard examples. Returns: Tensor: Computed Varifocal Loss value. """ # Compute focal weight terms based on prediction confidence levels pt = (target * pred.sigmoid()) + ((1 - target) * (1 - pred.sigmoid())) at = torch.exp(-(beta * torch.pow(target - pred.sigmoid(), 2))) # Apply modulated cross entropy loss with computed weights ce_loss = F.binary_cross_entropy_with_logits(pred, target, reduction="none") vf_loss = at * torch.pow((1 - pt), gamma) * ce_loss return vf_loss.mean() ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JerryLXu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值