图论基础(二)

本文介绍了图论中的连通性概念,包括无向图的连通性和有向图的强连通与弱连通。此外,还讲解了图的连通分量,即顶点集合内任意顶点彼此可达的子集,并通过实例解析了如何识别连通分量。
摘要由CSDN通过智能技术生成

图论基础(二)

图的连通性

​ 如果无向图G=(V, E)中每一个顶点到其它任意顶点都是可达的,则称G是连通的。假定有无向图G=(V, E),V={ 1, 2, 3, 4 },E={ (1, 2), (1, 3), (3, 4) },则G的结构如下图:

无向连通图

​ 如果有向图G=(V, E)中任意两个顶点互相可达,则称G为强连通图。如果有向图G=(V, E)不是强连通图,但将G中的边去掉方向之后,是一个连通的无向图,则称G为弱连通图。假定有有向图G=(V, E),V={ 1, 2, 3 },E={ < 1, 2 >, < 1, 3 >, < 2, 1 >, < 2, 3 >, < 3, 1 >, < 3, 2 > },则G的结构如下图:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值