自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(469)
  • 资源 (3)
  • 收藏
  • 关注

原创 PyTorch生成式人工智能实战(3)——分类任务详解

在本节中,将学习如何使用 PyTorch 创建深度神经网络来执行二分类和多类别分类任务,以便熟练掌握深度学习和分类任务。具体而言,我们将构建一个完整的端到端深度学习项目,使用 PyTorch 将灰度图像的服装物品分类为不同类别,包括外套、包、运动鞋、衬衫等。目的是创建能够执行二分类和多类别分类任务的深度神经网络,为后续学习奠定基础。

2025-04-25 08:27:14 605 9

原创 使用深度 Q 学习解决Lunar lander问题

深度 Q 学习模型只需观察状态作为输入就能够解决经典 Atari 游戏,这是一个重大突破,从那时起,深度强化学习 (deep reinforcement learning, DRL) 已经展示出具有比人类更好地解决许多复杂任务的能力。在本节中,我们将实现经典深度 Q 网络 (deep Q-learning, DQN) 解决 Lunar lander 问题。

2025-04-24 09:54:26 337 6

原创 PyTorch生成式人工智能实战(2)——PyTorch基础

PyTorch 张量是多维数据的基本结构,支持灵活的形状变换、索引操作和数学计算。数据类型的选择(如精度权衡)和形状匹配是深度学习中的重要考量。通过张量操作,可高效实现数据预处理、特征整合及模型输入输出处理。

2025-04-24 09:14:08 621 1

原创 TensorFlow深度学习实战(14)——循环神经网络详解

循环神经网络 (Recurrent Neural Network, RNN) 是一类特殊的神经网络结构,广泛应用于处理和分析序列数据,如文本、语音、时间序列等。与传统的神经网络不同,RNN 具有记忆功能,可以通过循环连接处理序列中各个元素之间的依赖关系。

2025-04-21 08:15:23 1465 16

原创 NEAT 算法解决 Lunar Lander 问题:从理论到实践

Lunar Lander 是 Gym 中的一个经典强化学习环境,目标是控制一个宇航着陆器在月球表面安全着陆。本节,通过使用 NEAT 来解决了 Lunar Lander 问题,通过探索神经网络结构的进化,能够自动优化策略以适应复杂的任务。

2025-04-20 17:05:04 484 2

原创 使用 NEAT 进化智能体解决 Gymnasium 强化学习环境

在本节中,我们使用 NEAT 解决经典强化学习 (reinforcement learning, RL) Gym 问题。但需要注意的是,我们用于推导网络和解决方程的方法不是 RL,而是进化和 NEAT,使用 NEAT 和 NEAT 智能体的进化种群相对简单。虽然本节使用 RL 环境并以 RL 方式训练智能体,但底层所用方法并非 RL。

2025-04-20 14:49:50 438

原创 使用NEAT算法探索Gymnasium中的Lunar Lander环境

OpenAI Gym 提供多种环境,可以在其中开发和比较强化学习算法,通过提供标准 API 用于学习算法和环境之间的通信。Gym 事实上已经成为用于强化学习中的基准,涵盖了许多功能全面且易于使用的环境。这类似于我们经常在监督学习中用作基准的数据集,例如 MNIST,Imagenet,和 Reuters 新闻数据集。在本节中,我们将使用 NEAT 探索 Gym 中的 Lunar lander 游戏。

2025-04-20 10:19:35 472 2

原创 PyTorch生成式人工智能实战(1)——神经网络与模型训练过程详解

在本节中,我们介绍了传统机器学习与人工神经网络间的差异,并了解了如何在实现前向传播之前连接网络的各个层,以计算与网络当前权重对应的损失值;实现了反向传播以优化权重达到最小化损失值的目标。并实现了网络的所有关键组成——前向传播、激活函数、损失函数、链式法则和梯度下降,从零开始构建并训练了一个简单的神经网络。

2025-04-17 08:51:54 2035 44

原创 TensorFlow深度学习实战——基于语言模型的动态词嵌入技术

基于语言模型的词嵌入技术,通过利用上下文信息来生成动态的词向量,大大提升了词嵌入模型的表达能力。随着 BERT、GPT 等大规模预训练模型的出现,基于语言模型的词嵌入在自然语言处理领域的应用变得越来越广泛,成为当前自然语言处理 (Natural Language Processing, NLP) 研究的一个重要方向。

2025-04-14 08:16:24 1166 19

原创 深度解析强化学习:原理、算法与实战

强化学习 (Reinforcement learning, RL) 的工作原理是让智能体观察环境的状态。对环境的观察或视图通常称为当前状态,智能体根据观察到的状态做出预测或动作。然后,基于该动作,环境根据给定状态提供奖励。它能够解决具有不确定性和复杂性的问题,并在动态环境下实现自主学习和决策能力。

2025-04-10 10:32:36 1559 32

原创 TensorFlow深度学习实战——字符嵌入、子词嵌入、句子嵌入和段落嵌入

在自然语言处理中,嵌入 (Embedding) 技术是将文本转化为数值向量的核心方法,使计算机能够理解和处理语言中的语义信息。根据文本处理的粒度不同,除了词嵌入外,还包括字符嵌入、子词嵌入、句子嵌入和段落嵌入。这些嵌入技术使得计算机能够以不同的粒度理解和处理文本中的语义信息,从而为各种自然语言处理任务提供强大的支持。

2025-04-07 08:34:36 1257 34

原创 AIGC实战——CycleGAN详解与实现

CycleGAN 是一种用于无监督图像转换的深度学习模型,它通过两个生成器和两个判别器的组合来学习两个不同域之间的映射关系。生成器负责将一个域的图像转换成另一个域的图像,而判别器则用于区分生成的图像和真实的图像。CycleGAN 引入循环一致性损失,确保图像转换是可逆的,从而提高生成图像的质量。通过对抗训练和循环一致性损失,CycleGAN 可以实现在没有配对标签的情况下进行图像域转换。

2025-04-04 08:43:01 1428 29

原创 使用 NEAT 算法实现端到端 MNIST 手写数字识别

使用 NEAT 解决图像分类问题,可以通过进化的方式自动优化神经网络的结构和权重。结合适当的数据预处理和参数设置,可以有效地提高分类任务的性能。本节中,我们使用 MNIST 手写数字数据集执行图像分类任务,使用 NEAT 对 MNIST 数据集进行分类。

2025-04-03 11:43:22 645 18

原创 TensorFlow深度学习实战(13)——神经嵌入详解

神经嵌入 (Neural Embedding) 是一种通过神经网络模型将离散的符号(如词语、字符、图像等)映射到低维连续向量空间中的技术。它属于更广泛的嵌入 (Embedding) 技术范畴,在深度学习中起着关键作用。神经嵌入通过在神经网络训练过程中学习到的向量表示,捕捉了输入数据的潜在特征和语义信息。

2025-03-31 08:18:37 1325 54

原创 TensorFlow深度学习实战——利用词嵌入实现垃圾邮件检测

在本节中,我们将介绍如何在一维卷积神经网络 (Convolutional Neural Network, CNN) 中使用该矩阵,实现垃圾邮件检测器将短信 (Short Message Service, SMS) 或文本消息分类为非垃圾邮件 (ham) 或垃圾邮件 (spam)。

2025-03-27 08:49:15 1581 44

原创 PyTorch生成式人工智能实战:从零打造创意引擎

专栏《PyTorch 生成式人工智能实战》深入探讨了生成式人工智能,这项技术通过其高效和快速的内容创作能力,正在重塑众多行业。具体来说,将学习如何使用生成式模型来创建各种形式的内容:数字、图像、文本和音频。此外,还将学习从零开始构建这些模型,以便深入理解生成式 AI 的内部工作原理,我们将使用 Python 和 PyTorch 来构建、训练和使用这些模型。

2025-03-24 08:48:14 11029 48

原创 NEAT 算法中的物种分化机制与优化实践

在本节中,我们将探讨 NEAT 如何使用“物种分化 (speciation) ”的特性来跟踪种群多样性。物种分化源自生物学,是一种描述相似的有机体如何进化出独特特征以成为不同物种的方法。达尔文首先提出了物种的概念,它是一种描述地球上生命进化过程的方法。

2025-03-21 12:58:23 1114 25

原创 TensorFlow深度学习实战(12)——词嵌入技术详解

词嵌入的核心思想是,通过将词语表示为稠密的向量,使得计算机可以更有效地处理和理解文本中的语义关系。在本节中,我们学习了单词分布式表示的概念及其实现,包括静态嵌入和动态嵌入,实现了 Word2Vec 和 GloVe 模型,并介绍了如何使用 Gensim API 探索嵌入空间。

2025-03-18 11:50:50 2158 45

原创 图神经网络实战——总结 | 图神经网络展望

短短数年时间,图神经网络 (Graph Neural Networks, GNN) 已经成为一种重要的深度学习架构,并且已经广泛应用于各个行业。通过本专栏的学习,能够对图学习和 GNN 领域有一个全面的了解,并能为各种应用设计、构建GNN模型。

2025-03-17 08:31:52 1885 12

原创 TensorFlow深度学习实战(11)——风格迁移详解

使用风格迁移算法生成图像的核心思想是通过获取损失和梯度变化值以生成风格迁移图像,将内容图像和风格参考图像混合在一起。在本节中,首先介绍了神经风格迁移的核心思想与风格迁移图像的生成流程,然后利用 TensorFlow 从零开始实现了风格迁移算法,可以通过修改模型中的超参数来生成不同观感的图像。

2025-03-12 09:01:27 2144 39

原创 TensorFlow深度学习实战——基于ResNet模型实现性别分类

本文通过实战案例演示了基于 ResNet50 模型的性别分类方法。针对深度神经网络中梯度消失问题,ResNet 创新性地引入残差连接机制。模型训练使用 CelebA 人脸数据集,包含 20 万张标注性别属性的图像,通过迁移学习加载预训练的 ResNet50 主干网络提取深度特征,并在顶部构建包含 2048 通道卷积层、最大池化层及全连接层的微调模型。

2025-03-11 08:15:51 1422 26

原创 图神经网络实战(25)——基于A3T-GCN预测交通流量

本节重点讨论了使用 TGNN 进行交通预测任务。首先,我们介绍了 PeMS-M 数据集,并将其从表格数据转换为具有时间信号的静态图数据集。在实践中,我们根据输入距离矩阵创建了加权邻接矩阵,并将交通速度转换为时间序列。最后,我们构建了 A3T-GCN 模型,这是一个专为交通预测设计的 T-GNN 模型,并将结果与两个基线模型进行了比较,验证了模型的预测结果。

2025-03-10 08:33:52 1599 22

原创 NEAT算法实战:基于进化神经网络的分类问题求解

NEAT-Python 封装了许多优化模式的工具,包括网络超参数、架构和参数优化以及增加拓扑结构。在本节中,我们将使用 sklearn 库构建示例数据集可视化 NEAT 分类结果。

2025-03-07 08:47:33 787 27

原创 理解神经网络架构:NEAT网络可视化

在本节中,我们将介绍如何可视化 NEAT 网络,用于理解网络架构的形成,还可以突出显示网络过拟合或欠拟合的情况。

2025-03-05 08:37:46 838 12

原创 TensorFlow深度学习实战(10)——迁移学习详解

迁移学习通过利用相关任务或领域的知识,帮助解决新任务或领域中的学习挑战,可以提高模型的泛化能力、加速模型训练,并在实际应用中取得良好的效果。在图像分类、目标检测、机器翻译等任务中,迁移学习已经展现出巨大的应用价值。在本节中,介绍了迁移学习的基本概念,并使用 TensorFlow 构建了迁移学习模型,利用预训练模型 Inception V3 加速学习过程并提高性能。

2025-03-03 08:29:49 2082 39

原创 NEAT算法解析:从增强拓扑原理到异或问题实战

NEAT (NeuroEvolution of Augmenting Topologies, 增强拓扑的神经进化)属于神经进化算法家族,能够对神经网络的拓扑结构和连接权重进行进化。其用于进化复杂人工神经网络,旨在通过在进化过程中逐步完善 ANN 的结构来减少参数搜索空间的维数。在本节中,我们将介绍 NEAT 框架,并构建 NEAT 网络以解决经典的一阶异或问题。

2025-02-28 08:20:13 1145 24

原创 TensorFlow深度学习实战(9)——构建VGG模型实现图像分类

VGG 模型是一种经典的深度卷积神经网络 (Convolutional Neural Network, CNN) 架构,该模型以其简单而有效的设计而著名,在图像分类任务中取得了优异成绩。VGG 模型的核心特点是采用了深层的网络结构,其中大部分层由卷积层和池化层组成,且卷积操作使用了尺寸较小的 3 x 3 卷积核,这使得网络能够捕捉到丰富的图像特征。

2025-02-25 08:50:38 1875 43

原创 图神经网络实战(24)——基于LightGCN构建推荐系统

本节详细介绍了如何使用 LightGCN 完成图书推荐任务。使用 "Book-Crossing" 数据集,对其进行了预处理以形成二部图,并使用 BPR 损失实现了 LightGCN 模型。对模型进行了训练,并使用 recall@20 和 ndcg@20 指标对其进行了评估。最后,通过为给定用户生成推荐来证明该模型的有效性。

2025-02-24 08:46:41 1456 17

原创 TensorFlow深度学习实战——构建卷积神经网络实现CIFAR-10图像分类

本节介绍如何利用卷积神经网络 (Convolutional Neural Network, CNN) 对 CIFAR-10 数据集进行图像分类。首先构建一个简单的 CNN 模型来进行 CIFAR-10 图像的分类,接着,通过模型优化技术提高分类准确率。介绍了一个完整的从数据准备到模型评估的图像分类实践过程。

2025-02-20 14:27:57 1817 33

原创 TensorFlow深度学习实战(8)——卷积神经网络

卷积神经网络 (Convolutional Neural Network, CNN) 是一种非常强大的深度学习模型,广泛应用于图像分析、目标检测、图像生成等任务中。CNN 的核心思想是卷积操作和参数共享,卷积操作通过滑动滤波器(也称为卷积核)在输入数据上进行元素级的乘积和求和运算,从而提取局部特征。通过多个滤波器的组合,CNN 可以学习到不同层次的特征表示,从低级到高级的抽象特征。本节从传统全连接神经网络的缺陷为切入点,介绍了卷积神经网络的优势及其基本组件,并使用 TensorFlow 构建卷积神经网络。

2025-02-17 11:20:37 2276 52

原创 进化生成对抗网络 (Evolutionary Generative Adversarial Networks, EvoGAN) 实战

进化对抗生成网络 (EvoGAN) 是一种结合了进化算法和对抗生成网络的模型。在本节中,我们通过优化封装的 DCGAN 类优化对抗生成网络模型。

2025-02-14 10:43:23 1475 28

原创 WGAN 架构设计:基因编码与 Keras 实现

本节通过将生成对抗网络 (Generative Adversarial Networks, GAN) 封装到一个接受遗传编码基因组表示的类中,辅助平衡 GAN 的训练超参数。

2025-02-11 10:54:42 1392 37

原创 TensorFlow深度学习实战(7)——分类任务详解

分类任务是机器学习中最常见的任务之一,广泛应用于各个领域。成功的分类任务不仅需要选择合适的算法,还需要对数据进行深入的预处理和特征工程。在本节中,我们首先介绍了分类任务及其与回归任务的区别,然后介绍了用于分类任务的逻辑回归技术,并使用 TensorFlow 实现了逻辑回归模型。

2025-02-08 09:31:48 2329 46

原创 TensorFlow深度学习实战(6)——回归分析详解

回归分析用于建立变量之间的数学模型,分析其关系,并进行预测。通过合理选择回归模型并确保假设条件成立,回归分析能够帮助决策和优化策略。本节中,首先介绍了线性回归,并用线性回归来预测简单的单变量房价情况,然后使用 TensorFlow 构建了简单和多重线性回归模型。

2025-02-05 08:30:03 1598 45

原创 WGAN (Wasserstein Generative Adversarial Networks) 详解与实现

WGAN 是 GAN 的一种变体,通过使用 Wasserstein 距离来衡量生成样本与真实样本之间的差异。在本节中,我们学习了如何使用 Wasserstein 损失函数以解决经典 GAN 训练过程中的模式坍塌和梯度消失等问题,使得 GAN 的训练过程更加稳定和可靠。

2025-02-01 08:15:00 1291 13

原创 生成对抗网络 (Generative Adversarial Networks, GAN) 详解与实现

生成对抗网络是一种强大的深度学习模型,由生成器网络和判别器网络组成,通过彼此之间的竞争来提高性能,已经在图像生成、图像修复、图像转换和自然语言处理等领域取得了巨大的成功。其核心思想是通过生成器和判别器之间的博弈过程来实现真实样本的生成。生成器负责生成逼真的样本,而判别器则负责判断样本是真实还是伪造。通过不断的训练和迭代,生成器和判别器会相互竞争并逐渐提高性能。

2025-01-27 11:05:08 1722 14

原创 一文读懂Transformer

Transformer 的不仅推动了 NLP 的快速发展,也成为了许多先进模型的基础。以GPT、BERT、T5 等为代表的大语言模型,均基于 Transformer 架构。此外,Transformer 还被成功应用于计算机视觉领域、推荐系统等领域,为深度学习带来了前所未有的效率与表现。随着研究的深入,Transformer 架构正在不断优化和拓展,不仅提升了模型的性能,也让人工智能技术更贴近实际应用。

2025-01-23 14:53:57 32612 109

原创 TensorFlow深度学习实战——情感分析模型

情感分析 (Sentiment Analysis) 是一种自然语言处理 (Natural Language Processing, NLP) 技术,旨在分析和识别文本中的情感倾向,情感分析模型能够根据情感倾向对文本进行分类。在本节中,我们将实现基于全连接神经网络的情感分析模型,以进一步熟悉神经网络构建流程。

2025-01-20 08:44:46 2418 36

原创 TensorFlow深度学习实战(5)——神经网络性能优化技术详解

在本节中,我们首先回顾使用 TensorFlow 构建 MNIST 手写数字识别神经网络,然后详细介绍神经网络中各种超参数的作用,通过使用不同的超参数优化神经网络性能。

2025-01-16 08:56:24 2325 47

原创 变分自编码器 (Variational AutoEncoder, VAE) 详解与实现

变分自编码器是一种结合了自编码器和概率建模的生成模型,通过编码器将输入数据映射到潜在空间中的概率分布,并通过解码器将从潜在空间采样得到的潜在变量映射回原始数据空间,实现了数据的生成和特征学习。

2025-01-14 15:13:58 832 26

用于目标检测的 YOLO V3 模型架构及权重文件(含 OpenCV 使用示例)

用于目标检测的 YOLO V3 模型架构及权重文件,用于执行目标检测推理阶段,可用于构建 OpenCV 目标检测计算机视觉项目,包含 OpenCV 使用示例。

2021-09-30

用于目标检测的 MobileNet-SSD 模型架构及权重文件(使用 Caffe 框架进行预训练)

用于目标检测的 MobileNet-SSD 模型架构及权重文件,使用 Caffe 进行预训练模型执行目标检测,可用于 OpenCV 目标检测计算机视觉项目,包含使用示例。

2021-09-30

用于图像分类的 ResNet-50 模型架构及权重文件(使用 Caffe 框架进行预训练)

用于图像分类的 ResNet-50 模型架构及权重文件,使用 Caffe 进行预训练模型执行图像分类,可用于 OpenCV 图像分类计算机视觉项目,包含使用示例。

2021-09-30

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除