自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(494)
  • 收藏
  • 关注

原创 Python数据结构与算法(6.1)——树

本节系统地介绍了树的基本术语和结构,包括节点、边、根节点、父子关系、度、深度和高度等概念,建立对树结构的清晰认知。随后,通过详细的代码,展示了树的构建及其常用的遍历方法,包括前序、后序和层次遍历。

2025-06-13 08:20:07 530 4

原创 PyTorch实战(9)——Pix2Pix详解与实现

Pix2Pix 是强大的图像转换框架,通过对抗训练和 U-Net 结构,使得生成网络能够将输入图像转换为与之对应的输出图像。同时在训练过程中,引入了像素级损失衡量生成图像与目标图像之间的像素级差异,促使生成网络生成更加细致和逼真的图像。本节中,介绍了 Pix2Pix 的模型训练流程,并使用 ShoeV2 数据集训练了一个 Pix2Pix 模型根据边缘图像生成鞋子图像。

2025-06-13 08:15:51 672

原创 TensorFlow深度学习实战(22)——从零开始实现Transformer机器翻译

在本节中,我们将使用 Transformer 模型解决实际问题,从零开始构建机器翻译模型。实现一个 Transformer 模型用于从葡萄牙语到英语的翻译任务。

2025-06-10 08:29:31 923 11

原创 TensorFlow深度学习实战(21)——Transformer架构详解与实现

Transformer 模型通过引入自注意力机制和多头注意力机制,克服了传统循环神经网络和长短期记忆网络在处理长序列时的局限性,与序列处理方法相比,Transformer 不仅提高了计算效率,支持并行化训练,还能捕捉序列中远距离的依赖关系,极大提升了模型的性能。凭借这些优势,Transformer 已成为现代深度学习中的核心架构,不仅在机器翻译、文本生成等传统自然语言处理任务中取得了卓越成果,还被成功应用于计算机视觉、语音识别等领域,推动了人工智能技术的飞速发展。

2025-06-10 08:23:33 1109 32

原创 TensorFlow深度学习实战(20)——自组织映射详解

自组织映射 (Self-Organizing Map, SOM) 是一种无监督学习算法,广泛用于数据的降维、聚类、模式识别等任务。它通过将高维数据映射到低维的网格上,使得相似的样本数据在网格中相邻。

2025-06-07 08:28:12 1057 4

原创 Transformer实战——词嵌入技术详解

词嵌入的核心思想是,通过将词语表示为稠密的向量,使得计算机可以更有效地处理和理解文本中的语义关系。在本节中,我们学习了单词分布式表示的概念及其实现,包括静态嵌入和动态嵌入,实现了 Word2Vec 和 GloVe 模型,并介绍了如何使用 Gensim API 探索嵌入空间。

2025-06-05 08:29:17 1324 37

原创 图神经网络实战——图属性度量方法详解

图论作为描述实体间关系的数学工具,在现代网络分析中扮演着重要角色。本节将系统性地介绍图的各种属性及其度量方法,这些指标能够从不同维度刻画网络的结构特征。我们将从基础概念出发,逐步深入探讨四大类图度量指标:整合性度量、分离性度量、中心性度量和弹性度量。

2025-06-04 08:49:45 506 11

原创 PyTorch实战(8)——深度卷积生成对抗网络

本文采用深度卷积生成对抗网络 (DCGAN) 生成高分辨率动漫面部图像。通过卷积层提取局部特征,反卷积层上采样,结合批归一化稳定训练。数据集包含 63632 张图像,预处理为 64×64 分辨率并归一化。鉴别器 (D) 由卷积层和 LeakyReLU 构成,生成器 (G) 镜像其结构,使用转置卷积生成图像。训练中交替优化 D 和 G,20 个 epoch 后生成图像质量显著提升。实验表明,DCGAN 能高效合成逼真动漫面部,验证了卷积神经网络在图像生成任务中的有效性。

2025-06-04 08:40:41 692 4

原创 TensorFlow深度学习实战(19)——受限玻尔兹曼机

受限玻尔兹曼机 (Restricted Boltzmann Machine, RBM) 是一种无监督学习的概率图模型,用于学习数据的特征表示。它是由两层神经元组成的网络,其中一层是可见层 (visible layer),用于表示输入数据;另一层是隐层 (hidden layer),用于捕捉数据的潜在特征,而深度信念网络是堆叠的 RBM。本节中,将介绍 RBM 的基本原理,并使用 TensorFlow 实现 RBM 和深度信念网络用于重建图像。

2025-06-01 10:23:20 828 22

原创 PyTorch实战——基于生成对抗网络生成服饰图像

我们已经学习了生成对抗网络 (Generative Adversarial Network, GAN) 的工作原理,接下来,将学习如何将其应用于生成其他形式的内容。在本节中,介绍使用 GAN 创建灰度图像,包括外套、衬衫、凉鞋等服饰,学习在设计生成器网络时如何镜像判别器网络。在本节中,生成器和判别器网络使用全连接层,全连接层的每个神经元都与前一层和后一层的所有神经元相连接。

2025-06-01 10:17:33 930 4

原创 图神经网络实战——图的可视化

图结构可通过图形化方式直观呈现。节点通常用圆形表示,边则用连接线表示。然而当节点和边数量增加时,绘制清晰的图形表示可能会变得相当困难,这主要源于节点在二维坐标系中的布局问题。对于包含数百个节点的图,手动指定每个节点的坐标显然不切实际。在本节中,我们将介绍如何在不指定每个节点坐标的情况下绘制图形。我们将利用两种不同的解决方案:networkx 和 Gephi。

2025-05-29 08:25:15 810 24

原创 TensorFlow深度学习实战(18)——K-means 聚类详解

K-means 聚类是一种常用的无监督学习算法,用于将数据集划分为若干个互不重叠的簇 (cluster),使得同一簇内的数据点尽可能相似,而不同簇之间的数据点尽可能不同。在本节中,将介绍 K-means 聚类的基本原理与局限性,并使用 TensorFlow 实现 K-means 聚类。

2025-05-29 08:21:24 1532 4

原创 PyTorch实战——生成对抗网络数值数据生成

在本节,首先学习如何将训练数据转换为神经网络能够理解的格式——独热编码 (one-hot encoding)。然后,将独热编码变量转换回 0 到 99 之间的整数,便于人类理解。换句话说,实际上是在将数据在可读格式与模型所需的格式之间进行转换。之后,将创建一个判别器和一个生成器,并训练生成对抗网络 (Generative Adversarial Network, GAN),使用提前停止方法来判断训练何时结束。训练完成后,丢弃判别器,使用已训练好的生成器生成具有所需模式的整数序列。

2025-05-26 08:18:45 1062 15

原创 PyTorch实战(7)——生成对抗网络(Generative Adversarial Network, GAN)实践详解

生成对抗网络 (Generative Adversarial Network, GAN) 最早由 Ian Goodfellow 于 2014 年提出,其中生成器试图创建与真实样本无法区分的数据样本,而判别器则试图区分生成器生成的样本与真实样本。在本节中,我们将介绍 GAN 的理论基础。然后,介绍如何使用 PyTorch 从零开始构建 GAN,以便了解所有细节,深入理解 GAN 的内部工作原理,为后续讨论 GAN 的其他更高级内容奠定基础,比如生成高分辨率图像或逼真的音乐。

2025-05-26 08:13:45 1320 6

原创 TensorFlow深度学习实战(17)——主成分分析详解

主成分分析 (Principal Component Analysis, PCA) 是一种常用的数据降维技术,主要用于处理高维数据并减少数据的复杂性,同时尽可能保留原始数据中的信息。它通过线性变换将数据从原始坐标系投影到一个新的坐标系,在新的坐标系中,数据的方差最大,且各主成分之间互相正交。

2025-05-22 08:15:57 1193 32

原创 Transformer实战——循环神经网络详解

循环神经网络 (Recurrent neural networks, RNN) ,RNN 是在文本输入中广泛使用的神经网络。RNN 非常灵活,已被用于解决诸如语音识别、语言建模、机器翻译、情感分析和图像字幕等问题。RNN 利用输入的序列特性,序列输入可以是文本、语音、时间序列以及任何其他元素的出现取决于其前面元素的序列。在本节中,我们介绍了 RNN 及其变体,并学习如何使用 TensorFlow 进行实现。

2025-05-19 08:11:13 1192 7

原创 TensorFlow深度学习实战(16)——注意力机制详解

在传统的神经网络中,所有的输入都被平等地处理,而注意力机制通过为输入的不同部分分配不同的权重(即注意力权重),使得网络能够更关注于对当前任务最重要的信息。例如在机器翻译中,某个单词在句子中比其他单词更关键,注意力机制会将更多的权重分配给该单词,从而使网络在生成翻译时能够更好地理解上下文。在本中,介绍了注意力机制的原理,以及如何利用注意力机制来提高 Seq2Seq 模型的性能。

2025-05-15 09:02:47 1598 106

原创 PyTorch实战(4)——卷积神经网络(Convolutional Neural Network, CNN)详解

卷积神经网络 (Convolutional Neural Network, CNN) 是一种广泛应用的深度学习模型。通过参数共享、局部感知和空间结构等优势,能够更好地处理图像数据,并在图像识别、目标检测和图像生成等任务中展现出强大的能力。在本节中,介绍了卷积的计算方法以及卷积神经网络的基本组件,并使用 PyTorch 构建了卷积神经网络以深入了解其工作原理。

2025-05-12 08:48:50 1468 83

原创 TensorFlow深度学习实战(15)——编码器-解码器架构

编码器-解码器架构也称 Seq2Seq (Sequence-to-Sequence) 模型,是一种用于处理序列数据的深度学习模型,广泛应用于自然语言处理任务中,如机器翻译、文本摘要、对话生成等。在 Seq2Seq 模型中,输入和输出都是序列形式,因此非常适用于需要将一个序列映射到另一个序列的任务。在本节中,将介绍 Seq2Seq 模型架构,并实现 Seq2Seq 模型用于机器翻译。

2025-05-09 08:35:21 1667 50

原创 PyTorch实战(3)——使用PyTorch构建神经网络

在本节中,我们使用 PyTorch 在简单数据集上构建了一个神经网络,训练神经网络来映射输入和输出,并通过执行反向传播来更新权重值以最小化损失值,并利用 Sequential 类简化网络构建过程;介绍了获取网络中间值的常用方法,以及如何使用 save、load 方法保存和加载模型,以避免再次训练模型。

2025-05-08 08:49:47 2175 12

原创 PyTorch实战(6)——生成模型(Generative Model)详解

本节介绍了人工智能的一个重要分支——生成模型,介绍了生成模型理论和应用的最新进展。我们从一个简单的示例开始,了解了生成模型最终关注的是对数据的潜在分布进行建模。通过总结生成模型框架,以理解生成模型的重要属性。然后,介绍了有助于理解生成模型的理论基础和关键概率概念,并概述了生成模型的分类方法。

2025-05-07 08:43:44 1839 20

原创 TensorFlow深度学习实战——基于循环神经网络的词性标注模型

‌词性标注 (Part-Of-Speech tagging, POS tagging) 也被称为语法标注 (grammatical tagging) 或词类消疑 (word-category disambiguation),是将语料库内单词的词性按其含义和上下文内容进行标记的文本数据处理技术‌,涉及识别文本中每个单词的语法类别,如名词、动词、形容词等。词性标注对于理解句子结构和语义至关重要,广泛应用于各类大规模语料库的自然语言处理和文本挖掘。

2025-05-04 08:30:00 1041 28

原创 TensorFlow深度学习实战——基于循环神经网络的情感分析模型

情感分析 (Sentiment Analysis) 是自然语言处理中的一项技术,旨在识别和提取文本中的情感信息,通常是分析一段文本中是否存在积极、消极或中立的情绪,广泛应用于社交媒体监控、客户反馈分析、产品评论分析等领域。在本节中,将实现基于循环神经网络的情感分析模型。

2025-05-01 08:30:00 1362 28

原创 Python数据结构与算法(5)——动态规划

动态规划是“用空间换时间”的典型算法策略,适用于具有最优子结构和重叠子问题的场景。掌握自顶向下备忘录法与自底向上表格法的转换技巧,并通过构建状态定义、转移方程及边界条件,能够系统地解决斐波那契数列、背包问题、LCS、硬币找零等经典问题。

2025-04-28 11:05:37 310 26

原创 TensorFlow深度学习实战——基于循环神经网络的文本生成模型

循环神经网络 (Recurrent Neural Network, RNN) 在自然语言处理 (Natural Language Processing, NLP) 领域中被广泛应用于各种任务,其中一种应用是构建语言模型。语言模型能够根据前面的单词预测文本中下一单词,语言模型对于机器翻译、拼写校正等高级任务至关重要。语言模型预测序列中下一个单词的能力使其成为一种生成模型,可以通过从词汇中不同单词的输出概率中进行采样生成文本。

2025-04-28 08:38:05 1367 6

原创 PyTorch实战(5)——分类任务详解

在本节中,将学习如何使用 PyTorch 创建深度神经网络来执行二分类和多类别分类任务,以便熟练掌握深度学习和分类任务。具体而言,我们将构建一个完整的端到端深度学习项目,使用 PyTorch 将灰度图像的服装物品分类为不同类别,包括外套、包、运动鞋、衬衫等。目的是创建能够执行二分类和多类别分类任务的深度神经网络,为后续学习奠定基础。

2025-04-25 08:27:14 2977 37

原创 使用深度 Q 学习解决Lunar lander问题

深度 Q 学习模型只需观察状态作为输入就能够解决经典 Atari 游戏,这是一个重大突破,从那时起,深度强化学习 (deep reinforcement learning, DRL) 已经展示出具有比人类更好地解决许多复杂任务的能力。在本节中,我们将实现经典深度 Q 网络 (deep Q-learning, DQN) 解决 Lunar lander 问题。

2025-04-24 09:54:26 495 15

原创 PyTorch实战(2)——PyTorch基础

PyTorch 张量是多维数据的基本结构,支持灵活的形状变换、索引操作和数学计算。数据类型的选择(如精度权衡)和形状匹配是深度学习中的重要考量。通过张量操作,可高效实现数据预处理、特征整合及模型输入输出处理。

2025-04-24 09:14:08 2404 2

原创 TensorFlow深度学习实战(14)——循环神经网络详解

循环神经网络 (Recurrent Neural Network, RNN) 是一类特殊的神经网络结构,广泛应用于处理和分析序列数据,如文本、语音、时间序列等。与传统的神经网络不同,RNN 具有记忆功能,可以通过循环连接处理序列中各个元素之间的依赖关系。

2025-04-21 08:15:23 2231 32

原创 NEAT 算法解决 Lunar Lander 问题:从理论到实践

Lunar Lander 是 Gym 中的一个经典强化学习环境,目标是控制一个宇航着陆器在月球表面安全着陆。本节,通过使用 NEAT 来解决了 Lunar Lander 问题,通过探索神经网络结构的进化,能够自动优化策略以适应复杂的任务。

2025-04-20 17:05:04 895 4

原创 使用 NEAT 进化智能体解决 Gymnasium 强化学习环境

在本节中,我们使用 NEAT 解决经典强化学习 (reinforcement learning, RL) Gym 问题。但需要注意的是,我们用于推导网络和解决方程的方法不是 RL,而是进化和 NEAT,使用 NEAT 和 NEAT 智能体的进化种群相对简单。虽然本节使用 RL 环境并以 RL 方式训练智能体,但底层所用方法并非 RL。

2025-04-20 14:49:50 889

原创 使用NEAT算法探索Gymnasium中的Lunar Lander环境

OpenAI Gym 提供多种环境,可以在其中开发和比较强化学习算法,通过提供标准 API 用于学习算法和环境之间的通信。Gym 事实上已经成为用于强化学习中的基准,涵盖了许多功能全面且易于使用的环境。这类似于我们经常在监督学习中用作基准的数据集,例如 MNIST,Imagenet,和 Reuters 新闻数据集。在本节中,我们将使用 NEAT 探索 Gym 中的 Lunar lander 游戏。

2025-04-20 10:19:35 874 4

原创 PyTorch实战(1)——神经网络与模型训练过程详解

在本节中,我们介绍了传统机器学习与人工神经网络间的差异,并了解了如何在实现前向传播之前连接网络的各个层,以计算与网络当前权重对应的损失值;实现了反向传播以优化权重达到最小化损失值的目标。并实现了网络的所有关键组成——前向传播、激活函数、损失函数、链式法则和梯度下降,从零开始构建并训练了一个简单的神经网络。

2025-04-17 08:51:54 4169 88

原创 TensorFlow深度学习实战——基于语言模型的动态词嵌入技术

基于语言模型的词嵌入技术,通过利用上下文信息来生成动态的词向量,大大提升了词嵌入模型的表达能力。随着 BERT、GPT 等大规模预训练模型的出现,基于语言模型的词嵌入在自然语言处理领域的应用变得越来越广泛,成为当前自然语言处理 (Natural Language Processing, NLP) 研究的一个重要方向。

2025-04-14 08:16:24 1283 36

原创 深度解析强化学习:原理、算法与实战

强化学习 (Reinforcement learning, RL) 的工作原理是让智能体观察环境的状态。对环境的观察或视图通常称为当前状态,智能体根据观察到的状态做出预测或动作。然后,基于该动作,环境根据给定状态提供奖励。它能够解决具有不确定性和复杂性的问题,并在动态环境下实现自主学习和决策能力。

2025-04-10 10:32:36 2267 32

原创 TensorFlow深度学习实战——字符嵌入、子词嵌入、句子嵌入和段落嵌入

在自然语言处理中,嵌入 (Embedding) 技术是将文本转化为数值向量的核心方法,使计算机能够理解和处理语言中的语义信息。根据文本处理的粒度不同,除了词嵌入外,还包括字符嵌入、子词嵌入、句子嵌入和段落嵌入。这些嵌入技术使得计算机能够以不同的粒度理解和处理文本中的语义信息,从而为各种自然语言处理任务提供强大的支持。

2025-04-07 08:34:36 1335 34

原创 AIGC实战——CycleGAN详解与实现

CycleGAN 是一种用于无监督图像转换的深度学习模型,它通过两个生成器和两个判别器的组合来学习两个不同域之间的映射关系。生成器负责将一个域的图像转换成另一个域的图像,而判别器则用于区分生成的图像和真实的图像。CycleGAN 引入循环一致性损失,确保图像转换是可逆的,从而提高生成图像的质量。通过对抗训练和循环一致性损失,CycleGAN 可以实现在没有配对标签的情况下进行图像域转换。

2025-04-04 08:43:01 2198 33

原创 使用 NEAT 算法实现端到端 MNIST 手写数字识别

使用 NEAT 解决图像分类问题,可以通过进化的方式自动优化神经网络的结构和权重。结合适当的数据预处理和参数设置,可以有效地提高分类任务的性能。本节中,我们使用 MNIST 手写数字数据集执行图像分类任务,使用 NEAT 对 MNIST 数据集进行分类。

2025-04-03 11:43:22 1050 18

原创 TensorFlow深度学习实战(13)——神经嵌入详解

神经嵌入 (Neural Embedding) 是一种通过神经网络模型将离散的符号(如词语、字符、图像等)映射到低维连续向量空间中的技术。它属于更广泛的嵌入 (Embedding) 技术范畴,在深度学习中起着关键作用。神经嵌入通过在神经网络训练过程中学习到的向量表示,捕捉了输入数据的潜在特征和语义信息。

2025-03-31 08:18:37 1417 54

原创 TensorFlow深度学习实战——利用词嵌入实现垃圾邮件检测

在本节中,我们将介绍如何在一维卷积神经网络 (Convolutional Neural Network, CNN) 中使用该矩阵,实现垃圾邮件检测器将短信 (Short Message Service, SMS) 或文本消息分类为非垃圾邮件 (ham) 或垃圾邮件 (spam)。

2025-03-27 08:49:15 1650 44

用于目标检测的 YOLO V3 模型架构及权重文件(含 OpenCV 使用示例)

用于目标检测的 YOLO V3 模型架构及权重文件,用于执行目标检测推理阶段,可用于构建 OpenCV 目标检测计算机视觉项目,包含 OpenCV 使用示例。

2021-09-30

用于图像分类的 ResNet-50 模型架构及权重文件(使用 Caffe 框架进行预训练)

用于图像分类的 ResNet-50 模型架构及权重文件,使用 Caffe 进行预训练模型执行图像分类,可用于 OpenCV 图像分类计算机视觉项目,包含使用示例。

2021-09-30

用于目标检测的 MobileNet-SSD 模型架构及权重文件(使用 Caffe 框架进行预训练)

用于目标检测的 MobileNet-SSD 模型架构及权重文件,使用 Caffe 进行预训练模型执行目标检测,可用于 OpenCV 目标检测计算机视觉项目,包含使用示例。

2021-09-30

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除