自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(523)
  • 资源 (3)
  • 收藏
  • 关注

原创 PyTorch实战(15)——自注意力生成对抗网络(Self-Attention GAN, SAGAN)

自注意力生成对抗网络 (Self-Attention Generative Adversarial Network, SAGAN) 通过在传统 GAN 中嵌入自注意力机制,有效捕捉图像中的长距离依赖关系,从而生成具有全局一致性和丰富细节的图像。本节详细阐述了自注意力模块的工作原理,包括查询-键-值映射和注意力权重计算,并展示了谱归一化技术如何提升训练稳定性。本节介绍了 SAGAN 的核心原理与 PyTorch 实现,并给出了在 CelebA 人脸数据集上的训练流程和生成效果。

2025-07-10 10:19:07 703 3

原创 生成式人工智能实战 | 自注意力生成对抗网络(Self-Attention Generative Adversarial Network, SAGAN)

自注意力生成对抗网络 (Self-Attention Generative Adversarial Network, SAGAN) 通过在传统 GAN 中嵌入自注意力机制,有效捕捉图像中的长距离依赖关系,从而生成具有全局一致性和丰富细节的图像。本节详细阐述了自注意力模块的工作原理,包括查询-键-值映射和注意力权重计算,并展示了谱归一化技术如何提升训练稳定性。本节介绍了 SAGAN 的核心原理与 PyTorch 实现,并给出了在 CelebA 人脸数据集上的训练流程和生成效果。

2025-07-10 09:47:18 626

原创 生成式人工智能实战 | Pix2Pix详解与实现

Pix2Pix 是强大的图像转换框架,通过对抗训练和 U-Net 结构,使得生成网络能够将输入图像转换为与之对应的输出图像。同时在训练过程中,引入了像素级损失衡量生成图像与目标图像之间的像素级差异,促使生成网络生成更加细致和逼真的图像。本节中,介绍了 Pix2Pix 的模型训练流程,并使用 ShoeV2 数据集训练了一个 Pix2Pix 模型根据边缘图像生成鞋子图像。

2025-07-09 15:40:12 299 3

原创 TensorFlow深度学习实战——基于自编码器构建句子向量

本文基于长短期记忆 (Long Short Term Memory, LSTM) 自编码器构建了 Reuters-21578 语料库的句子向量表示模型。传统词袋方法忽略词序,而 LSTM 通过处理序列数据保留语义信息。模型采用 50 维 GloVe 词嵌入,通过双向 LSTM 编码器将句子压缩为 512 维向量,再经解码器重建。

2025-07-08 12:58:48 872 9

原创 生成式人工智能实战 | 条件生成对抗网络(conditional Generative Adversarial Network, cGAN)

生成对抗网络 (cGAN) 通过向生成器和判别器注入类别标签等条件信息,解决了传统GAN生成过程不可控的问题。本节介绍了 cGAN 的原理与实现,基于PyTorch框架,在CIFAR-10数据集上构建了cGAN模型:生成器通过转置卷积将噪声与标签嵌入结合生成图像,判别器通过卷积网络和标签嵌入判别真伪。

2025-07-08 12:35:18 793 2

原创 TensorFlow深度学习实战——去噪自编码器详解与实现

去噪自编码器 (DAE) 是一种通过从噪声数据中恢复原始数据来提升特征学习能力的自编码器变体。与传统自编码器不同,DAE 在训练时主动向输入数据添加噪声,迫使模型学习鲁棒的特征表示。其架构通常为过完备型(隐藏层维度大于输入层),通过编码器-解码器结构实现噪声去除。本文以 MNIST 数据集为例,展示了 DAE 的实现过程:首先对图像添加高斯噪声,随后构建包含编码器和解码器的自编码器模型,使用均方误差损失和 Adam 优化器进行训练。

2025-07-07 08:51:14 817 7

原创 TensorFlow深度学习实战(24)——卷积自编码器详解与实现

卷积自编码器是一种基于卷积神经网络结构的自编码器,适用于处理图像数据。卷积自编码器在图像处理领域有广泛的应用,包括图像去噪、图像压缩、图像生成等任务。通过训练卷积自编码器,可以提取出输入图像的关键特征,并实现对图像数据的降维和压缩,同时保留重要的空间信息。在本节中,我们介绍了卷积自编码器的模型架构,使用 TensorFlow 从零开始在 MNIST 数据集上训练了一个简单的卷积自编码器,用于去除图像中的噪声信号。

2025-07-07 08:21:39 712 1

原创 PyTorch实战(14)——条件生成对抗网络(conditional GAN,cGAN)

本文介绍了条件生成对抗网络(cGAN)的原理与实践应用。首先对比了两种控制生成图像特征的方法:潜空间向量选择和cGAN标签控制,分析了各自的优缺点。随后详细讲解了cGAN的构建过程,包括带标签扩展的评论家网络和生成器网络设计,以及使用Wasserstein距离和梯度惩罚的训练策略。通过在eyeglasses数据集训练cGAN,展示了如何实现标签条件控制生成。进一步探讨了结合潜空间向量运算和标签插值的方法,实现了对多个特征(如性别和眼镜)的联合控制。

2025-07-04 16:56:34 1375 11

原创 生成式人工智能实战 | 条件变分自编码器(conditional Variational Autoencoder, cVAE)

条件变分自编码器 (cVAE) 在 VAE 基础上引入标签信息,通过条件化证据下界 (ELBO) 实现可控生成。其编码器接收数据和标签,输出潜变量分布参数;解码器结合潜变量和标签重建数据。本节使用 PyTorch 实现 cVAE,使用 Fashion-MNIST 数据集训练,通过重构损失和 KL 散度优化模型。实验显示,模型能按指定类别(如“踝靴”)生成高质量样本,验证了其条件生成能力。

2025-07-02 08:28:34 856 10

原创 PyTorch实战(13)——WGAN详解与实现

Wasserstein GAN (WGAN) 是一种通过使用 Wasserstein 距离代替二元交叉熵作为损失函数来提高 GAN 模型训练稳定性和性能的技术。此外,为了让 Wasserstein 距离正常工作,WGAN 中的判别器(评论家)必须是 1-Lipschitz 连续的,这意味着判别器函数的梯度范数在任何地方都必须最大为 1。WGAN 中的梯度惩罚为损失函数添加了一个正则化项,以更有效地强制执行 Lipschitz 连续性约束。

2025-07-02 08:21:23 1069

原创 生成式人工智能实战 | 变分自编码器(Variational Auto-Encoder, VAE)

本文介绍了变分自编码器 (VAE) 的原理与实现,阐述了其相较于传统自编码器的改进。VAE通过编码器将输入数据映射为潜在空间的概率分布(均值和方差),利用重参数化技巧实现可微采样,使解码器能生成新样本。通过引入 KL 散度损失,强制潜在变量服从标准正态分布,从而确保潜空间的连续性和可解释性,支持向量运算和样本插值。本文详细介绍了 VAE 的 PyTorch 实现,并使用 CIFAR-10 数据集组合重构损失和 KL 散度进行端到端训练。

2025-06-30 08:59:41 699 15

原创 生成式人工智能实战 | 自编码器(AutoEncoder, AE)

本文介绍了自编码器 (AutoEncoder, AE) 的基本原理及其在生成手写数字中的应用。自编码器由编码器和解码器组成,编码器将输入数据压缩为低维潜空间表示,解码器则重建原始数据。文章以 MNIST 手写数字数据集为例,详细阐述了构建和训练自编码器的过程:通过全连接网络实现编码器(压缩图像为20维向量)和解码器(重建图像),使用均方误差作为损失函数,训练后的模型能够生成与原始图像高度相似的重建结果。

2025-06-30 08:43:45 760

原创 TensorFlow深度学习实战——稀疏自编码器详解与实现

稀疏自编码器 (Sparse Autoencoder) 是一种自编码器 (Autoencoder) 变体,旨在通过对隐藏层的激活进行稀疏化约束,使模型学习到更具有代表性的特征。它是自编码器的一种扩展,除了保持自编码器常规的编码与解码过程外,稀疏自编码器还通过限制隐藏层神经元的激活数量,迫使模型仅在少数激活的神经元上进行表示,从而达到稀疏表示的效果。

2025-06-30 08:30:27 950 1

原创 TensorFlow深度学习实战(23)——自编码器详解与实现

自编码器 (Autoencoder) 是一种无监督学习的神经网络模型,用于数据的特征提取和降维,它由一个编码器 (Encoder) 和一个解码器 (Decoder) 组成,通过将输入数据压缩到低维表示,然后再重构出原始数据。在本节中,我们将学习如何使用自编码器,以在低维空间表示图像,学习以较少的维度表示图像有助于修改图像,可以利用低维表示来生成新图像。

2025-06-30 08:23:35 668

原创 生成式人工智能实战 | WGAN(Wasserstein Generative Adversarial Network, GAN)

本节介绍了 Wasserstein GAN (WGAN) 的原理与实现,重点分析其如何通过 Wasserstein 距离和梯度惩罚 (Gradient Penalty) 改进传统 GAN 的训练稳定性。WGAN 使用 Wasserstein 损失替代二元交叉熵,提供更平滑的梯度,缓解模式崩溃问题。通过强制判别器 (Critic) 满足 1-Lipschitz 连续性(采用梯度惩罚而非权重裁剪),显著提升训练稳定性。

2025-06-27 08:20:22 1335 17

原创 生成式人工智能实战 | 深度卷积生成对抗网络(Deep Convolutional Generative Adversarial Network, DCGAN)

深度卷积生成对抗网络 (DCGAN) 是基于生成对抗网络的深度学习模型,通过引入卷积神经网络 (Convolutional Neural Networks, CNN) 架构来提升生成网络和判别网络的性能。DCGAN 中的生成网络和判别网络都是使用卷积层和反卷积层构建的深度神经网络。生成网络接收一个随机噪声向量作为输入,并通过反卷积层将其逐渐转化为与训练数据相似的输出图像,判别网络则是一个用于分类真实和生成图像的卷积神经网络。

2025-06-27 08:06:40 940 8

原创 生成式人工智能实战 | 生成对抗网络(Generative Adversarial Network, GAN)

生成对抗网络 (Generative Adversarial Networks, GAN) 是一种由两个相互竞争的神经网络组成的深度学习模型,它由一个生成网络和一个判别网络组成,通过彼此之间的博弈来提高生成网络的性能。生成对抗网络使用神经网络生成与原始图像集非常相似的新图像,它在图像生成中应用广泛,且 GAN 的相关研究正在迅速发展,以生成与真实图像难以区分的逼真图像。在本节中,我们将学习 GAN 网络的原理并使用 PyTorch 实现 GAN。

2025-06-26 08:44:16 850 7

原创 PyTorch实战(16)——自编码器(AutoEncoder)详解

自编码器 (AutoEncoder, AE) 具有双重组件结构:编码器和解码器。编码器将数据压缩为低维空间中的抽象表示(潜空间),而解码器将编码的信息解压并重建数据。本节介绍了自编码器 AE 及其基本结构。为了深入理解 AE 的工作原理,构建并训练一个自编码器生成手写数字。

2025-06-26 08:34:08 548 4

原创 生成式人工智能实战 | 生成模型(Generative Model)基础

本节介绍了人工智能的一个重要分支——生成模型,介绍了生成模型理论和应用的最新进展。我们从一个简单的示例开始,了解了生成模型最终关注的是对数据的潜在分布进行建模。通过总结生成模型框架,以理解生成模型的重要属性。然后,介绍了有助于理解生成模型的理论基础和关键概率概念,并概述了生成模型的分类方法。

2025-06-26 08:25:50 1486 2

原创 TensorFlow深度学习实战——Transformer模型优化

优化 Transformer 涉及构建轻量级、响应迅速且高能效的模型。在本节中,我们介绍优化模型时最常采用的一些方法,并展望未来 Transformer 模型的发展方向。

2025-06-26 08:15:45 685 2

原创 TensorFlow深度学习实战——使用TensorFlow Hub构建Transformer模型

TensorFlow Hub 是一个包含已训练的机器学习模型的库,这些模型可以进行微调并可在任何地方部署,其核心思想是通过简单的代码重用像 BERT 和 Faster R-CNN 这样的预训练模型。

2025-06-26 08:09:36 96

原创 TensorFlow深度学习实战——使用Hugging Face构建Transformer模型

本节介绍了如何利用Hugging Face库高效实现Transformer模型的应用,Hugging Face提供了丰富的预训练模型和工具,支持多种自然语言处理任务。首先说明了安装Hugging Face库的方法,并通过情感分析示例验证安装。随后,详细展示了文本生成、自动模型选择与分词、命名实体识别以及摘要生成等任务的实现步骤,均通过Hugging Face的pipeline或相关API轻松完成。最后,重点介绍了模型微调的方法,演示了如何加载数据集、转换为TensorFlow格式、选择预训练模型并进行训练。

2025-06-23 08:56:55 1077 26

原创 PyTorch实战(12)——StyleGAN详解与实现

StyleGAN (Style-Generative Adversarial Networks) 是生成对抗网络 (GAN) 的变体,是一种无监督学习模型,用于生成逼真且高分辨率的图像。与传统 GAN 不同,StyleGAN 引入了两个关键概念:样式迁移和逐渐增强。样式迁移允许生成网络控制图像的风格和外观,从而生成具有不同特征的图像。逐渐增强则是指生成网络逐层地生成图像,先生成粗略的细节,然后逐渐添加更多细节和结构,从而获得更加逼真的图像。

2025-06-23 08:39:43 740 10

原创 PyTorch实战(11)——神经风格迁移

神经风格迁移是一种利用深度学习技术合成两个图像风格的方法,通过卷积神经网络提取图像的特征表示,并通过优化损失函数的方式合成新的图像,从而创造出独特而富有艺术感的合成图像。在本节中,首先介绍了神经风格迁移的核心思想与风格迁移图像的生成流程,然后利用 PyTorch 从零开始实现了神经风格迁移算法,可以通过修改模型中的超参数来生成不同观感的图像。

2025-06-22 20:38:44 529 6

原创 Transformer实战——Hugging Face环境配置与应用详解

本文详细介绍 Transformer 模型的实践应用全流程。首先讲解基于 Anaconda 的环境配置,包括 transformers 库安装及 hf-mirror 镜像加速方案。然后以 BERT 为例,演示分词器使用、文本编码及 fill-mask 等任务实现,对比 PyTorch/TensorFlow 框架差异。接着展示 Hugging Face 社区模型应用,包括 GPT-2 文本生成和零样本分类。最后扩展至多模态领域,使用 CLIP 模型实现零样本图像分类。

2025-06-20 10:24:44 2512 72

原创 TensorFlow深度学习实战——Transformer模型评价指标

可以使用多种类型的指标评估 Transformer 模型。在本节中,我们将学习一些用于评估 Transformer 的关键因素,即质量、规模和服务成本,通常,需要在这些指标间进行权衡。

2025-06-20 10:02:42 1081 21

原创 PyTorch实战(10)——CyclelGAN详解与实现

本文详细介绍了CycleGAN的原理与实现,这是一种能够在无配对样本情况下学习不同图像域间转换的生成对抗网络。CycleGAN通过引入循环一致性损失,确保转换后的图像能够重建原始图像,从而保留关键特征。文章以黑发与金发人脸转换为例,从数据集处理、模型构建到训练策略进行了完整讲解。

2025-06-18 09:44:23 1121 28

原创 TensorFlow深度学习实战——Transformer变体模型

在 Transformer 模型提出之后,研究人员提出了大量基于 Transformer 的变体模型。本节中,介绍了流行的 Transformer 变体模型

2025-06-18 09:34:06 1058 11

原创 Transformer实战——从词袋模型到Transformer:NLP技术演进

在本节中,我们介绍了 NLP 方法和架构的演变,从 BoW 到 Transformer,回顾了如何实现基于 BoW、RNN 和 CNN 的方法,理解了 Word2Vec 的概念及其如何帮助通过浅层 TL 改进传统的深度学习方法。我们还探讨了 Transformer 架构的基础,并以 BERT 为例进行了介绍。我们了解了 TL 及其在 BERT 中的应用。还介绍了多模态学习的基本概念,并简要介绍了 ViT。同时,也讨论了 CLIP 和 Stable Diffusion 等模型。

2025-06-14 13:09:34 2819 35

原创 Python数据结构与算法(6.1)——树

本节系统地介绍了树的基本术语和结构,包括节点、边、根节点、父子关系、度、深度和高度等概念,建立对树结构的清晰认知。随后,通过详细的代码,展示了树的构建及其常用的遍历方法,包括前序、后序和层次遍历。

2025-06-13 08:20:07 899 19

原创 PyTorch实战(9)——Pix2Pix详解与实现

Pix2Pix 是强大的图像转换框架,通过对抗训练和 U-Net 结构,使得生成网络能够将输入图像转换为与之对应的输出图像。同时在训练过程中,引入了像素级损失衡量生成图像与目标图像之间的像素级差异,促使生成网络生成更加细致和逼真的图像。本节中,介绍了 Pix2Pix 的模型训练流程,并使用 ShoeV2 数据集训练了一个 Pix2Pix 模型根据边缘图像生成鞋子图像。

2025-06-13 08:15:51 1314 4

原创 TensorFlow深度学习实战(22)——从零开始实现Transformer机器翻译

在本节中,我们将使用 Transformer 模型解决实际问题,从零开始构建机器翻译模型。实现一个 Transformer 模型用于从葡萄牙语到英语的翻译任务。

2025-06-10 08:29:31 1265 38

原创 TensorFlow深度学习实战(21)——Transformer架构详解与实现

Transformer 模型通过引入自注意力机制和多头注意力机制,克服了传统循环神经网络和长短期记忆网络在处理长序列时的局限性,与序列处理方法相比,Transformer 不仅提高了计算效率,支持并行化训练,还能捕捉序列中远距离的依赖关系,极大提升了模型的性能。凭借这些优势,Transformer 已成为现代深度学习中的核心架构,不仅在机器翻译、文本生成等传统自然语言处理任务中取得了卓越成果,还被成功应用于计算机视觉、语音识别等领域,推动了人工智能技术的飞速发展。

2025-06-10 08:23:33 1792 75

原创 TensorFlow深度学习实战(20)——自组织映射详解

自组织映射 (Self-Organizing Map, SOM) 是一种无监督学习算法,广泛用于数据的降维、聚类、模式识别等任务。它通过将高维数据映射到低维的网格上,使得相似的样本数据在网格中相邻。

2025-06-07 08:28:12 1241 7

原创 Transformer实战——词嵌入技术详解

词嵌入的核心思想是,通过将词语表示为稠密的向量,使得计算机可以更有效地处理和理解文本中的语义关系。在本节中,我们学习了单词分布式表示的概念及其实现,包括静态嵌入和动态嵌入,实现了 Word2Vec 和 GloVe 模型,并介绍了如何使用 Gensim API 探索嵌入空间。

2025-06-05 08:29:17 2740 74

原创 图神经网络实战——图属性度量方法详解

图论作为描述实体间关系的数学工具,在现代网络分析中扮演着重要角色。本节将系统性地介绍图的各种属性及其度量方法,这些指标能够从不同维度刻画网络的结构特征。我们将从基础概念出发,逐步深入探讨四大类图度量指标:整合性度量、分离性度量、中心性度量和弹性度量。

2025-06-04 08:49:45 544 23

原创 PyTorch实战(8)——深度卷积生成对抗网络

本文采用深度卷积生成对抗网络 (DCGAN) 生成高分辨率动漫面部图像。通过卷积层提取局部特征,反卷积层上采样,结合批归一化稳定训练。数据集包含 63632 张图像,预处理为 64×64 分辨率并归一化。鉴别器 (D) 由卷积层和 LeakyReLU 构成,生成器 (G) 镜像其结构,使用转置卷积生成图像。训练中交替优化 D 和 G,20 个 epoch 后生成图像质量显著提升。实验表明,DCGAN 能高效合成逼真动漫面部,验证了卷积神经网络在图像生成任务中的有效性。

2025-06-04 08:40:41 1055 4

原创 TensorFlow深度学习实战(19)——受限玻尔兹曼机

受限玻尔兹曼机 (Restricted Boltzmann Machine, RBM) 是一种无监督学习的概率图模型,用于学习数据的特征表示。它是由两层神经元组成的网络,其中一层是可见层 (visible layer),用于表示输入数据;另一层是隐层 (hidden layer),用于捕捉数据的潜在特征,而深度信念网络是堆叠的 RBM。本节中,将介绍 RBM 的基本原理,并使用 TensorFlow 实现 RBM 和深度信念网络用于重建图像。

2025-06-01 10:23:20 1030 23

原创 PyTorch实战——基于生成对抗网络生成服饰图像

我们已经学习了生成对抗网络 (Generative Adversarial Network, GAN) 的工作原理,接下来,将学习如何将其应用于生成其他形式的内容。在本节中,介绍使用 GAN 创建灰度图像,包括外套、衬衫、凉鞋等服饰,学习在设计生成器网络时如何镜像判别器网络。在本节中,生成器和判别器网络使用全连接层,全连接层的每个神经元都与前一层和后一层的所有神经元相连接。

2025-06-01 10:17:33 1287 4

原创 图神经网络实战——图的可视化

图结构可通过图形化方式直观呈现。节点通常用圆形表示,边则用连接线表示。然而当节点和边数量增加时,绘制清晰的图形表示可能会变得相当困难,这主要源于节点在二维坐标系中的布局问题。对于包含数百个节点的图,手动指定每个节点的坐标显然不切实际。在本节中,我们将介绍如何在不指定每个节点坐标的情况下绘制图形。我们将利用两种不同的解决方案:networkx 和 Gephi。

2025-05-29 08:25:15 846 24

用于目标检测的 YOLO V3 模型架构及权重文件(含 OpenCV 使用示例)

用于目标检测的 YOLO V3 模型架构及权重文件,用于执行目标检测推理阶段,可用于构建 OpenCV 目标检测计算机视觉项目,包含 OpenCV 使用示例。

2021-09-30

用于图像分类的 ResNet-50 模型架构及权重文件(使用 Caffe 框架进行预训练)

用于图像分类的 ResNet-50 模型架构及权重文件,使用 Caffe 进行预训练模型执行图像分类,可用于 OpenCV 图像分类计算机视觉项目,包含使用示例。

2021-09-30

用于目标检测的 MobileNet-SSD 模型架构及权重文件(使用 Caffe 框架进行预训练)

用于目标检测的 MobileNet-SSD 模型架构及权重文件,使用 Caffe 进行预训练模型执行目标检测,可用于 OpenCV 目标检测计算机视觉项目,包含使用示例。

2021-09-30

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除