自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(393)
  • 资源 (3)
  • 收藏
  • 关注

原创 遗传算法与深度学习实战(12)——粒子群优化详解与实现

粒子群优化 (Particle Swarm Optimization, PSO) 是一种借鉴适者生存和群集行为概念的进化计算方法。在本节中,我们使用 PSO 来近似求解函数所需的最优参数,展示 PSO 在解决参数函数输入上的强大能力。

2024-09-11 08:38:25 1107 30

原创 遗传算法与深度学习实战(5)——遗传算法中常用遗传算子

遗传算子的选择需要考虑特定的基因或个体类型;当然,我们也可以根据具体问题自定义合适的遗传算子。将正确的遗传算子应用于具体问题需要了解不同遗传算子的功能和原理。在本节中,我们将介绍一些常见的遗传算子。

2024-09-09 08:57:43 1073 27

原创 遗传算法与深度学习实战(11)——遗传编程详解与实现

在本节中,我们使用基因表达式编程 (Gene Expression Programming, GEP) 来推导方程,解决多变量回归问题,目标是使该方程在给定多个输入值的情况下成功地回归或预测输出值。本节仅使用预先输入到目标方程式的随机输入来验证结果。然而,该方法同样可以用来执行回归,类似于在深度学习 (Deep learning, DL) 中使用的方式。

2024-09-06 15:53:16 1025 16

原创 遗传算法与深度学习实战(10)——使用遗传算法重建图像

EvoLisa 是一个经典的遗传算法应用案例,展示了如何利用计算机算法来模仿艺术家的创作风格,尤其是在复杂的艺术形式中,如绘画和图像生成。本节中,我们使用 DEAP 通过复现 EvoLisa 项目重建《蒙娜丽莎》图像。

2024-09-02 14:58:19 1946 36

原创 遗传算法与深度学习实战(9)——使用遗传算法解决旅行商问题

使用遗传算法 (Genetic Algorithm, GA) 解决旅行商问题 (Traveling Salesman Problem, TSP) 是一种常见且有效的方法。遗传算法模拟了生物进化的过程,通过交叉、变异和选择等操作来逐步优化问题的解。遗传算法作为一种启发式算法,虽然不能保证找到全局最优解,但通常能在合理时间内找到很好的近似解,尤其适合解决大规模的 TSP 问题。

2024-08-28 09:04:48 1016 62

原创 图神经网络实战(19)——异构图神经网络

异构图由不同类型的节点和边组成,可以表示实体之间的各种关系,这比单一类型的连接具有更高的表达能力。在本节中,我们将回顾关于同构图神经网络 (Graph Neural Networks, GNN) 与消息传递神经网络框架的相关概念,以扩展 GNN 架构适用于异构图。首先,我们将创建自定义异构数据集。然后,将同构架构转化为异构架构。

2024-08-26 08:31:38 1046 52

原创 遗传算法与深度学习实战(8)——使用遗传算法解决N皇后问题

N 皇后问题是一个经典的组合问题,要求在一个( N x N )的棋盘上放置 N 个皇后,使得它们互相不能攻击到对方。遗传算法是解决 N 皇后问题的一种有效方法,本节中,我们使用 DEAP 库实现遗传算法解决了 N 皇后问题。

2024-08-21 08:06:56 1599 81

原创 遗传算法与深度学习实战(7)——DEAP框架初体验

OneMax 问题是遗传算法和进化计算领域中的一个简单但经典的问题,常用于展示如何应用进化算法进行优化任务。在本节中,我们介绍了 DEAP 框架下遗传算法构建的通用流程,并使用 DEAP 解决简单的 OneMax 问题。

2024-08-19 08:58:34 1134 57

原创 遗传算法与深度学习实战(6)——遗传算法框架DEAP

DEAP 是一个基于 Python 的开源框架,专门用于实现和运行各种进化算法,旨在帮助用户轻松地构建和调整进化算法,用于解决各种优化和搜索问题。本节中,介绍了 DEAP 相较于其它进化计算框架的优势,以及 DEAP 中重要的工具 creator 和 Toolbox。

2024-08-15 08:28:35 1192 42

原创 遗传算法与深度学习实战(4)——遗传算法详解与实现

在遗传算法 (Genetic Algorithms, GA) 中,使用选择、交叉、突变和适应度来模拟生物减数分裂或繁殖的基本操作。适应度是衡量个体优劣的指标,可以用于量化模拟个体成功解决给定问题的能力。通过修改遗传算法超参数,如种群大小、世代数、交叉率和突变率等超参数,能够调整和修改进化进程。在本节中,我们介绍了遗传算法基本概念及算法流程,并使用 Python 实现遗传算法解决 OneMax 问题。

2024-08-13 09:46:33 1653 51

原创 图神经网络实战(18)——消息传播神经网络

消息传递神经网络 (Message Passing Neural Network, MPNN) 通过消息传播机制对多种图神经网络 (Graph Neural Networks, GNN) 模型做出了一般性总结。在本节中,我们介绍了 MPNN 框架,该框架通过信息、聚合和更新三个步骤统一了 GNN 层,同时介绍了如何在 PyTorch Geometric 中使用 MPNN 创建图卷积网络 (Graph Convolutional Network, GCN) 层。

2024-08-09 08:52:25 2059 87

原创 遗传算法与深度学习实战(3)——生命模拟与进化论

生命模拟利用计算机模拟来模拟生命体的行为、生长和进化过程。这些模拟可以基于简单的规则和算法,通过模拟生物个体的互动和繁殖,探索复杂系统如何从简单规则中产生出自组织和复杂性。在本节中,通过借鉴达尔文的进化论,构建了升级版的生命模拟。

2024-08-06 09:42:06 4078 71

原创 遗传算法与深度学习实战(2)——生命模拟及其应用

生命模拟是进化计算的一个特定子集,模拟了自然界中所观察到的自然过程,例如粒子或鸟群的聚集方式。生命模拟只是用来探索和优化问题的模拟形式之一,还有很多其他形式的模拟,可以更好地建模各种过程,但它们都源于康威生命游戏 (Conway’s Game of Life)。在本节中,我们将介绍生命模拟的基本概念,并使用 Python 实现康威生命游戏。

2024-08-01 08:16:45 3803 48

原创 图神经网络实战——MolGAN详解与实现

molecular GAN (MolGAN) 模型结合了生成器、鉴别器和来自强化学习的奖励网络。这种架构不仅能简单地模仿训练过程中看到的图,还能优化所需的特性,如溶解性等,本节将使用 DeepChem 和 TensorFlow 创建独特而有效的分子。这类图生成模型在药物发现行业十分常见,可以大大加快药物开发的速度。

2024-07-29 08:29:46 1566 67

原创 遗传算法与深度学习实战(1)——进化深度学习

进化深度学习 (Evolutionary Deep Learning, EDL) 是一套可以用于自动化深度学习系统开发的工具和实践,EDL 包括了广泛的进化计算方法和模式,可以应用于深度学习系统流程的各个方面。本节中,介绍了深度学习面临的挑战,以及进化深度学习在应对这些挑战方面的技术方法。

2024-07-25 11:20:24 4797 92

原创 PyTorch深度学习实战——使用深度Q学习进行Pong游戏

我们已经学习了如何利用深度 Q 学习来进行 Gym 中的 CartPole 游戏。在本节中,我们将研究更复杂的 Pong 游戏,并了解如何结合深度 Q 学习与固定目标网络进行此游戏,同时利用基于卷积神经网络 (Convolutional Neural Networks, CNN) 的模型替代普通神经网络。

2024-07-22 09:14:37 2263 64

原创 图神经网络实战(17)——深度图生成模型

图生成是生成新图的技术,并且希望所生成的图具有真实世界中图的性质。由于传统图生成方法缺乏表达能力,因此提出了更加灵活的基于图神经网络的技术。本节中,我们介绍了三类深度图生成模型: 基于变分自编码器的模型、基于自回归模型和基于生成对抗网络的模型。

2024-07-18 10:27:28 1413 63

原创 PyTorch深度学习实战(46)——深度Q学习

深度 Q 学习是一种结合了深度学习和强化学习的方法,通过深度神经网络逼近 Q 值函数,在解决大规模、连续状态空间问题方面具有优势,并在多个领域展示了强大的学习和决策能力。在本节中,介绍了深度 Q 学习的基本概念,并学习了如何使用 PyTorch 实现深度 Q 学习进行 CartPole 游戏。

2024-07-15 08:43:39 1587 63

原创 PyTorch深度学习实战(45)——强化学习

强化学习是当前人工智能领域的研究热点问题,强化学习主要通过考察智能体与环境的相互作用,得到策略模型、优化策略并最大化累积回报的过程。强化学习具有巨大的研究价值和应用潜力,是实现通用人工智能的关键技术。本文首先介绍强化学习的基本原理,包括马尔可夫决策过程、价值函数、探索-利用问题等,然后介绍经典的强化学习算法,最后使用 PyTorch 实现在游戏中模拟强化学习算法。

2024-07-10 14:50:15 1593 75

原创 图神经网络实战(16)——经典图生成算法

图生成算法是指用于创建模拟图或网络结构的算法,这些算法可以根据特定的规则和概率分布生成具有特定属性的图,用于模拟各种复杂系统,如社交网络、生物网络、交通网络等。传统图生成技术已有数十年历史,并可用作各种应用的基准,但这些技术在生成的图类型上存在限制。这些方法大多数都专注于输出特定的拓扑结构,因此不能简单地模仿给定网络。在本节中,我们将介绍两种经典图生成技术:Erdős–Rényi 模型和小世界 (small-world) 模型。

2024-07-07 10:46:31 2360 86

原创 OpenCV 车牌检测

级联分类器采用的卷积核列表是经过事先标识和筛选的,只有当多数卷积核都对目标进行了正确分类时,才会给出良好的分类得分。本节中,利用预训练的级联分类器识别汽车图像中车牌的位置。

2024-07-02 15:29:38 5681 82

原创 图神经网络实战(15)——SEAL链接预测算法

链接预测是指利用图数据中已知的节点和边的信息,来推断图中未知的连接关系或者未来可能出现的连接关系,在机器学习和数据挖掘等领域具有广泛的应用。本节中介绍了用于链接预测的 SEAL 框架,其侧重于子图表示,每个链接周围的邻域作为预测链接概率的输入。并使用边级随机分割和负采样在 Cora 数据集上实现了`SEAL 模型执行链接预测任务。

2024-06-26 08:26:28 1580 74

原创 OpenCV 颜色检测

绿幕技术是一种经典的视频编辑技术,可以用于将人物置于不同的背景中。例如在电影制作中,技术的关键在于演员不能身着特定颜色的衣服(比如绿色),站在只有绿色的背景前。然后,通过识别绿色像素,确定背景并替换这些像素上的内容。在本节中,我们将了解如何利用 cv2.inRange 和 cv2.bitwise_and 方法检测给定图像中的绿色像素。

2024-06-24 08:58:02 2078 59

原创 OpenCV 车道检测

在本节中,我们将了解如何使用边缘检测和直线检测识别道路图像中的车道。

2024-06-20 09:42:44 2714 60

原创 图神经网络实战(14)——基于节点嵌入预测链接

链接预测可以帮助我们发现隐藏的关联规律,从而为网络分析、推荐系统等问题提供有效的解决方案。在本节中,介绍了如何使用图神经网络 (Graph Neural Networks, GNN) 实现链接预测,学习了基于节点嵌入的链接预测技术,包括图自编码器 (Graph Autoencoder, GAE) 和变分图自编码器 (Variational Graph Autoencoder, VGAE),并使用边级随机分割和负采样在 Cora 数据集上实现了 VGAE 模型。

2024-06-17 11:05:58 1658 73

原创 OpenCV 单词轮廓检测

在本节中,我们将学习如何在不利用深度学习的情况下识别机器打印的单词。由于打印单词的背景和前景之间的对比度很高,因此不需要像 YOLO 之类的模型来识别单个单词的位置,在这种情况下,使用 OpenCV 可以在计算资源非常有限的情况下获得解决方案,唯一的缺点是准确率可能并非 100%,准确率取决于扫描图像的质量,如果扫描图像非常清晰,则准确率可以接近 100%。

2024-06-14 09:28:58 2546 64

原创 图神经网络实战(13)——经典链接预测算法

链接预测 (Link prediction) 可以帮助我们理解和挖掘图中的关系,并在社交网络、推荐系统等领域提供更准确的预测和决策支持。为了解决链接预测问题,研究者们提出了多种方法。本节将介绍基于局部和全局邻域的启发式方法。

2024-06-11 08:31:50 2707 86

原创 图神经网络实战(12)——图同构网络(Graph Isomorphism Network, GIN)

图同构网络 (Graph Isomorphism Network, GIN) 架构受 WL 测试启发而设计的,其表达能力与 WL 测试相近,因此在严格意义上比 GCN、GAT 或 GraphSAGE 更具表达能力。在本节中,将这一架构用于图分类任务,介绍了将节点嵌入融合到图嵌入中的不同方法,GIN 通过连接求和运算符和每个 GIN 层产生图嵌入,其性能明显优于通过 GCN 层获得的经典全局均值池化。最后,我们将两个模型的预测结果进行简单的集成,从而进一步提高了准确率。

2024-06-06 09:37:23 3034 97

原创 PyTorch深度学习实战(44)——基于 DETR 实现目标检测

基于 DETR 的目标检测模型是将 Transformer 网络引入目标检测任务中,与传统的基于区域提议的检测方法有所不同。DETR 模型的核心思想是将目标检测问题转化为集合预测问题,通过将图像中的所有位置视为一个集合,并通过 Transformer 完成对整个集合的编码和解码过程,从而在单个前向传递中直接预测出目标的类别和边界框。在本节中,我们将学习 transformer 和 DETR 的原理,并使用 PyTorch 实现 DETR 以执行目标检测任务。

2024-06-04 08:26:45 2522 76

原创 探索文档解析技术,推动大模型训练与应用

探索文档解析技术是推动大模型训练与应用的重要一环。在本节中,我们将回顾来自合合信息的智能创新事业部研发总监常扬在中国图象图形大会 (CCIG 2024) 中关于文档解析技术加速大模型训练与应用的分享,介绍大模型训练和应用过程的关键环节面临的挑战,探索当前高性能的文档解析技术。

2024-05-31 08:02:11 10881 188

原创 OpenCV 创建全景图像

在本节中,我们将学习组合多个图像来创建全景图像。使用相机拍摄全景照片时,通常会拍摄多张照片,通过算法将这些图像中共同存在的元素(从左到右)映射到一张单独的图像中。

2024-05-27 08:26:47 2074 68

原创 图神经网络实战(11)——Weisfeiler-Leman测试

在本节中,我们定义了图神经网络 (Graph Neural Networks, GNN) 的表达能力,这一定义基于 WL 测试算法,它可以输出图的规范形式。虽然这种算法并不完美,但可以区分大多数图结构。

2024-05-23 08:44:25 1443 82

原创 PyTorch深度学习实战(43)——手写文本识别

手写文本识别,也称为手写文本的光学字符识别 (Optical Character Recognition, OCR),是计算机视觉和自然语言处理中的一项具有挑战性的任务。与印刷文本不同,手写文本在风格、大小和质量方面变化巨大,这使得识别和转录变得更加困难。在本节中,我们将学习如何根据手写文字图像输入生成字符序列,为了提高手写图像的转录性能,将引入 CTC 损失函数。

2024-05-21 08:30:10 1431 51

原创 PyTorch深度学习实战(42)——图像字幕生成

图像字幕生成模型在计算机视觉和自然语言处理等领域具有广泛的应用。它可以用于自动图像标注、图像搜索和辅助视觉障碍者等方面。图像字幕生成模型的目标是实现对图像的语义理解和描述生成,从而更好地连接图像和文本信息。在本节中,我们学习如何利用 CNN 和 LSTM 构建模型为图像生成描述字幕。

2024-05-17 08:23:53 1614 73

原创 图神经网络实战(10)——归纳学习

在本节中,我们将介绍图数据中的归纳学习和多标签分类,使用 GraphSAGE 模型在蛋白质相互作用 (protein-protein interactions) 数据集执行多标签分类任务,并了解归纳学习的优势和实现方法。

2024-05-13 09:11:33 1866 96

原创 AIGC实战——多模态模型DALL.E 2

DALL.E 2 是 OpenAI 提出的一个大规模文本生成图像模型,可以根据文本提示生成各种风格的逼真图像。它通过将预训练模型 CLIP 与 GLIDE 中的扩散模型架构相结合完成任务。它还具有其他应用,例如通过文本提示编辑图像和提供给定图像的变体。虽然它也有一些局限性,例如不一致的文本渲染和属性绑定,但 DALL.E 2 是仍然一个非常强大的AI模型,推动了生成模型的发展。

2024-05-08 09:23:24 2176 64

原创 图神经网络实战(9)——GraphSAGE详解与实现

本节介绍了 GraphSAGE 框架及其两个组成部分——邻居采样算法和三个不同的聚合算子,其中邻居采样是 GraphSAGE 能够高效处理大规模图的核心。并使用 PyTorch Geometric 构建 GraphSAGE 模型在 PubMed 数据集上执行节点分类,GraphSAGE 虽然准确率略低于 GCN 或 GAT 模型,但它是常用于处理大规模图数据的高效框架。

2024-05-06 08:42:11 2244 66

原创 AIGC实战——MuseGAN详解与实现

可以将音乐生成视为一个图像生成问题,这意味着可以不使用 Transformer,而是应用在图像生成问题中表现出色的基于卷积的技术,例如生成对抗网络 (Generative Adversarial Network, GAN)。本节中,我们将解决多声部音乐生成的问题,并探讨如何使用基于 GAN 架构创建多声部音乐。

2024-05-04 08:07:03 2501 52

原创 PyTorch深度学习实战(41)——循环神经网络与长短期记忆网络

循环神经网络 (Recurrent Neural Network, RNN) 通过将前一个时间步的隐藏状态作为当前时间步的输入,实现对序列数据的建模,由于循环连接的存在,RNN 能够捕获时间依赖关系,然而,RNN 在处理长期依赖性问题时会遇到困难。为了解决这个问题,提出了 LSTM,通过引入门控机制改进 RNN 来有效地处理长期依赖关系。在本节中,了解了 LSTM 和 RNN 的基本原理,并介绍了如何在 PyTorch 中实现 LSTM。

2024-04-28 08:25:13 3794 82

原创 AIGC实战——基于Transformer实现音乐生成

Transformer 是最流行的音乐生成技术之一,因为音乐可以视为一个序列预测问题,Transformer 模型将音符视为一个个符号的序列(类似于句子中的单词),从而用于生成音乐。Transformer 模型基于先前音符预测下一个音符,生成音乐作品。在本节中,将学习如何处理音乐数据,并应用 Transformer 生成与给定训练集风格相似的音乐。

2024-04-24 08:12:16 4354 111

用于目标检测的 YOLO V3 模型架构及权重文件(含 OpenCV 使用示例)

用于目标检测的 YOLO V3 模型架构及权重文件,用于执行目标检测推理阶段,可用于构建 OpenCV 目标检测计算机视觉项目,包含 OpenCV 使用示例。

2021-09-30

用于目标检测的 MobileNet-SSD 模型架构及权重文件(使用 Caffe 框架进行预训练)

用于目标检测的 MobileNet-SSD 模型架构及权重文件,使用 Caffe 进行预训练模型执行目标检测,可用于 OpenCV 目标检测计算机视觉项目,包含使用示例。

2021-09-30

用于图像分类的 ResNet-50 模型架构及权重文件(使用 Caffe 框架进行预训练)

用于图像分类的 ResNet-50 模型架构及权重文件,使用 Caffe 进行预训练模型执行图像分类,可用于 OpenCV 图像分类计算机视觉项目,包含使用示例。

2021-09-30

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除