佩尔方程及其在一类二元二次丢番图方程的推广

本文介绍了佩尔方程的性质与解法,包括标准型佩尔方程的最小解求解,以及通过连分数的方法。还探讨了非标准型佩尔方程的解决策略,以及如何应用于没有xy项的二元二次丢番图方程。文章以实际例题解析了佩尔方程在ACM竞赛和算法问题中的应用。
摘要由CSDN通过智能技术生成

前言

这是一篇欠了半年多的博客,期间笔者遇到了诸多类似问题,故决定做出总结性结论。

标准型佩尔方程

形如 x 2 − D y 2 = 1 ( D > 0 ) x^2-Dy^2=1(D>0) x2Dy2=1(D>0)的方程,即为标准型佩尔方程。

性质

1.容易得到, { x = ± 1 y = 0 \begin{cases}x=\pm1\\y=0\end{cases} { x=±1y=0必是该方程的解。
D D D为平方数,则只有这种解,反之则有无数多组解。
证明略,见百度百科
2.若一组解 ( x 1 , y 1 ) (x_1,y_1) (x1,y1)是非 ( ± 1 , 0 ) (\pm1,0) (±1,0)的最小正整数解(即 D D D为非平方数),则 { x n = x n − 1 x 1 + D y n − 1 y 1 y n = x n − 1 y 1 + y n − 1 x 1 \begin{cases}x_n=x_{n-1}x_1+Dy_{n-1}y_1\\y_n=x_{n-1}y_1+y_{n-1}x_1\end{cases} { xn=xn1x1+Dyn1y1yn=xn1y1+yn1x1
或者可以写成 x n + D y n = ( x 1 + D y 1 ) n x_n+\sqrt{D}y_n=(x_1+\sqrt{D}y_1)^{n} xn+D yn=(x1+D y1)n
或者写成
x n = ( x 1 + D y 1 ) n + ( x 1 − D y 1 ) n 2 x_n=\frac{(x_1+\sqrt{D}y_1)^n+(x_1-\sqrt{D}y_1)^n}{2} xn=2(x1+D y1)n+(x1D y1)n
y n = ( x 1 + D y 1 ) n − ( x 1 − D y 1 ) n 2 D y_n=\frac{(x_1+\sqrt{D}y_1)^n-(x_1-\sqrt{D}y_1)^n}{2\sqrt{D}} yn=2D

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值