- 博客(1)
- 收藏
- 关注
转载 ⭐ 扩散模型与在线强化学习强强联合 ⭐ Diffusion Actor-Critic with Entropy Regulator (NeurIPS 2024)
然而,在大多数传统的强化学习算法中,策略通常被参数化为可学习的高斯分布,这限制了它们表达复杂策略的能力。该算法将扩散模型的反向过程作为一种新的策略函数,利用其具有拟合多模态分布的能力,从而增强了策略的表达能力。使用估计得到的策略熵,我们学习一个参数来调节探索和利用的程度。在MuJoCo机器人控制任务和多模态任务上进行的实验证明,DACER都达到了SOTA的性能。此外,在状态最为复杂的Humanoid-v3和Ant-v3任务中,DACER的收敛性能分别达到了13209和11470。
2024-12-30 21:18:30
68
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人