题目大意:
给你一个n个点m条边的无向图,求出1号点到n号点必须经过某些点的最短路径
//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
//#pragma GCC optimize("Ofast", "inline", "-ffast-math")
//#pragma GCC target("abm,avx,mmx,popcnt,sse,sse2,sse3,ssse3,sse4")
#include <algorithm>
#include <cstring>
#include <iostream>
#include <vector>
#define dbg(x) cout << #x << '=' << x << endl
#define dbg1(x, y) cout << #x << '=' << x << ',' << #y << '=' << y << endl
#define FA ios::sync_with_stdio(0), cin.tie(0), cout.tie(0)
#define INF 0x3f3f3f3f
using namespace std;
const int N = 110, M = 2 * N, mod = 1e9 + 7;
const double eps = 1e-8;
typedef long long LL;
typedef pair<int, int> PII;
int d[N][N];
int a[N];
int n, m, f;
int ans;
void floyd() {
for (int k = 1; k <= n; k++) {
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++)
d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}
}
}
void solve(int T) {
ans = INF;
scanf("%d %d %d", &n, &m, &f);
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
if (i == j)
d[i][j] = 0;
else
d[i][j] = INF;
}
}
for (int i = 1; i <= m; i++) {
int u, v, w;
scanf("%d %d %d", &u, &v, &w);
d[u][v] = d[v][u] = min(d[u][v], w);
}
floyd();
for (int i = 1; i <= f; i++) {
scanf("%d", &a[i]);
}
sort(a + 1, a + 1 + f);
do {
int res = d[1][a[1]];
for (int i = 2; i <= f; i++) {
res += d[a[i - 1]][a[i]];
}
res += d[a[f]][n];
ans = min(ans, res);
} while (next_permutation(a + 1, a + 1 + f));
printf("Case %d: %d\n", T, ans);
}
signed main() {
int T = 1;
scanf("%d", &T);
for (int i = 1; i <= T; i++) solve(i);
}