H. Weekend(floyd + next_permutation)

Problem - H - Codeforces

题目大意:

给你一个n个点m条边的无向图,求出1号点到n号点必须经过某些点的最短路径

//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
//#pragma GCC optimize("Ofast", "inline", "-ffast-math")
//#pragma GCC target("abm,avx,mmx,popcnt,sse,sse2,sse3,ssse3,sse4")
#include <algorithm>
#include <cstring>
#include <iostream>
#include <vector>
#define dbg(x) cout << #x << '=' << x << endl
#define dbg1(x, y) cout << #x << '=' << x << ',' << #y << '=' << y << endl
#define FA ios::sync_with_stdio(0), cin.tie(0), cout.tie(0)
#define INF 0x3f3f3f3f
using namespace std;
const int N = 110, M = 2 * N, mod = 1e9 + 7;
const double eps = 1e-8;
typedef long long LL;
typedef pair<int, int> PII;

int d[N][N];
int a[N];
int n, m, f;
int ans;

void floyd() {
    for (int k = 1; k <= n; k++) {
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= n; j++)
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
        }
    }
}

void solve(int T) {
    ans = INF;
    scanf("%d %d %d", &n, &m, &f);
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= n; j++) {
            if (i == j)
                d[i][j] = 0;
            else
                d[i][j] = INF;
        }
    }
    for (int i = 1; i <= m; i++) {
        int u, v, w;
        scanf("%d %d %d", &u, &v, &w);
        d[u][v] = d[v][u] = min(d[u][v], w);
    }
    floyd();

    for (int i = 1; i <= f; i++) {
        scanf("%d", &a[i]);
    }
    sort(a + 1, a + 1 + f);

    do {
        int res = d[1][a[1]];
        for (int i = 2; i <= f; i++) {
            res += d[a[i - 1]][a[i]];
        }
        res += d[a[f]][n];
        ans = min(ans, res);
    } while (next_permutation(a + 1, a + 1 + f));

    printf("Case %d: %d\n", T, ans);
}

signed main() {
    int T = 1;
    scanf("%d", &T);
    for (int i = 1; i <= T; i++) solve(i);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值