图的割边(代码)

割边不需要讨论当前点是否是根节点的情况,因为是不是根节点对结果都无影响。只需要将割点代码中的low[node[x]]>=low[cur]改为low[node[x]]>low[cur]即可,因为如果有等号,node[x]还是可以通过非树边到达cur,此边就不是割边。

割边判断的是node[x]是否可以通过非树边到达cur(cur并不删去),而割点判断的是是否可以通过非树边到达cur之前的点(cur会被删去)。

P.S.这是一个无向图。

输入数据:

6  6

1 4     1 3     4 2     3 2     2 5     5 6

输出(输出割边):

5-6

2-5

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;

int n,m,cnt,node[50],root[50],next[50]; //割边不需要froot变量,因为是不是根节点对结果都无影响 
int num[50],low[50],index;

void insert(int u, int v) {
	cnt++;
	node[cnt] = v;
	next[cnt] = root[u];
	root[u] = cnt;
}
void biuld() {
	for (int i=1; i<=m; i++) {
		int u,v;
		cin >> u >> v;
		insert(u,v);
		insert(v,u);
	}
}

void bridge(int cur, int father)
{
	num[cur] = low[cur] = ++index;
	for (int x=root[cur]; x!=-1; x=next[x]) {
		if (!num[node[x]]) {
			bridge(node[x],cur);
			
			low[cur] = min(low[cur],low[node[x]]);
			if (low[node[x]] > num[cur])    //即node[x]不能通过非树边回到cur,node[x]回到 cur只有一条道路,所以这条道路就是割边。 
				printf("%d-%d\n",cur,node[x]);
		}
		else if (node[x] != father)
			low[cur] = min(low[cur], num[node[x]]);
	}
}

int main()
{
	cin >> n >> m;
	for (int i=1; i<=max(m,n); i++) root[i] = next[i] = -1;
	biuld();
	
	bridge(1,-1);
	return 0;
}

当然,判断一条边是否为割边的条件也可以写作

if (low[node[x]] == num[node[x]])   
	printf("%d-%d\n",cur,node[x]);


  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值