数字信号处理
Retrospector
这个作者很懒,什么都没留下…
展开
-
可分离卷积的运算量比较与分析(一维、二维卷积)
1、一维卷积和二维可分离卷积对于高斯平滑二维卷积滤波器,可以将其分解为两次一维卷积,这两种方案在运算量上有明显的差别。设滤波函数为:对图像????(????, ????)与ℎ(????, ????)进行卷积与运算,记边界索引???? = (???? − 1)/2,即:2、运算量分析对于单纯的一个像素点来说,采用二维卷积和分解方法,其实运算量差别不大。但是对于整幅图像来说,分解方法中可以实现一些乘法结果的复用,这就可以降低乘法的运算量了。2.1 直接进行二维卷积如果对卷积之前根据卷积原创 2020-06-21 16:53:43 · 2337 阅读 · 0 评论 -
关于极坐标下图像旋转与二维傅里叶变换的讨论
1、问题背景此问题来源于冈萨雷斯的数字图像处理(第三版)5.19题,自己做的时候,没发现哪里有问题,一个同学的提问使我重新审视了这个问题,并感觉对傅里叶变换有了新的理解。根据下面一部分的基础知识,我们可以计算出线性运动对应的模糊滤波器H(u,v)H(u,v)H(u,v),但是对于图像的旋转,这种非线性的图像变换关系,并没有给出直接的计算方法分理出H(u,v)H(u,v)H(u,v)。比较自然地...原创 2020-04-02 12:04:37 · 4802 阅读 · 0 评论 -
MATLAB 自编函数—用于卷积conv运算横坐标的确定
卷积运算一般来说,在使用MATLAB的conv函数进行卷积运算时,我们的输入序列都是从n=0时刻开始的,设两个序列的长度为N1和N2,则得到的卷积序列的长度为N1+N2-1,其对应的横坐标范围就是0:1:N1+N2-1-1。当两个序列的起始位置不为0时,得到的卷积结果坐标需要专门去确定。这里自编一个函数get_bound来解决这个问题,和conv一起使用效果很好。代码实现function ...原创 2019-11-25 19:26:45 · 3551 阅读 · 1 评论 -
MATLAB 自编函数实现序列根据坐标合并
目标在MATLAB中,我们很容易定义两个有限长序列,但是当它们的时间轴不同或者说错位时,就会对序列的基本运算带来麻烦。举个例子令x[n]={1,2,3,4,5,6,7,6,5,4,3,2,1},x[n]从n=0时刻开始有值,试画出序列y[n]=x[3-n]+x[n]*x[n-2];这里的难点在于x[n]已有其坐标范围为0:1:length(xn)-1,x[n-2]的序列值也不需要改变,其有...原创 2019-11-25 18:12:40 · 921 阅读 · 0 评论 -
MATLAB 重复序列数组的函数
repmat函数使用方法:>> A = [1,2,3;4,5,6] % 定义一个2行3列的矩阵A = 1 2 3 4 5 6>> B = repmat(A,3,2) % 将A按行重复3遍、按列重复2遍,得到BB = 1 2 3 1 2 3 ...原创 2019-11-25 17:51:08 · 5971 阅读 · 0 评论 -
MATLAB 自编代码实现DFS和IDFS,以及对DFT补零和周期重复的分析
基本公式X~(k)=DFS[x~(n)]=∑n=0N−1x~(n)e−j2πNkn\tilde{X}(k)=DFS[\tilde{x}(n)]=\sum_{n=0}^{N-1} \tilde{x}(n) e^{-j \frac{2 \pi}{N} k n}X~(k)=DFS[x~(n)]=∑n=0N−1x~(n)e−jN2πknx~(n)=IDFS[X~(n)]=1N∑k=0N−1X~(k...原创 2019-11-22 00:08:10 · 4637 阅读 · 2 评论