解锁合同抽取新姿势,打工人必备秘籍

一、引言

在当今数字化时代,合同作为企业运营中至关重要的法律文件,承载着大量关键信息,涵盖合作条款、权益责任、交易细节等。传统的人工处理合同方式,在面对海量合同数据时,效率低下、易出错,已难以满足企业快速发展的需求。合同抽取技术应运而生,它宛如一把精准的手术刀,能够从复杂的合同文本中高效、准确地提取关键信息,将非结构化的合同数据转化为结构化数据 ,为企业的合同管理、风险评估、数据分析等工作提供有力支持。

从业务流程优化的角度来看,合同抽取技术可以大幅缩短合同处理周期,使企业能够更快地响应市场变化,抓住商机。以金融行业为例,在处理大量贷款合同、保险合同等时,人工抽取关键信息往往需要耗费大量时间和人力,而借助合同抽取技术,能够快速提取出贷款金额、还款期限、保险条款等重要信息,提高业务办理效率,降低运营成本。在法律领域,律师事务所处理大量合同审查工作时,合同抽取技术可以辅助律师快速定位关键条款和风险点,提高审查质量和效率 。

从数据驱动决策的层面而言,合同抽取所获取的结构化数据,为企业的数据分析和决策提供了坚实基础。企业可以通过对这些数据的深入挖掘,分析业务趋势、评估合作风险、优化合同条款等,从而制定更加科学合理的发展战略。比如,企业通过分析合同中的价格条款和交易数据,可以了解市场价格波动情况,优化采购策略;通过分析合同的违约条款和历史违约数据,可以评估合作方的信用风险,加强风险管理。因此,深入了解和掌握合同抽取技术,对于企业提升竞争力、实现可持续发展具有重要意义,这也正是本文探讨合同抽取技术的原因所在。

二、合同抽取是什么

合同抽取,简单来说,就是从非结构化或半结构化的合同文本中,精准提取出具有关键价值的信息,并将其转化为结构化数据的过程 。这些关键信息丰富多样,涵盖合同双方的主体信息,如名称、地址、联系方式等,它们明确了合同的参与方,是合同权利义务的承载主体;合同签订的时间,这一关键时间节点对于确定合同的生效、履行期限等具有重要意义;合同金额,直接关系到交易的经济规模和价值;付款方式,规定了资金的流动方式和时间节点,影响着双方的资金安排和财务计划;还有违约责任,它是对合同双方行为的约束,一旦违约,将依据此条款承担相应后果。 例如,在一份房屋租赁合同中,合同抽取需要提取出租方和承租方的姓名、身份证号、联系电话,合同签订日期、租赁期限、租金金额及支付方式、房屋维修责任、违约赔偿等信息 。

从技术实现角度来看,合同抽取主要依托光学字符识别(OCR)技术和自然语言处理(NLP)技术 。OCR 技术宛如一位敏锐的 “文字侦探”,能够将合同中的图像文本,比如扫描件中的文字,转化为计算机可识别的文本格式 。以常见的扫描合同为例,OCR 技术可以快速准确地识别其中的文字内容,即使存在字迹模糊、排版不规则等问题,也能通过先进的算法进行处理和识别,大大提高了文本获取的效率和准确性 。NLP 技术则像一位精通语言理解的 “专家”,对 OCR 识别后的文本进行深入分析和理解 。它通过词法分析,能够准确识别出单词、词组及其词性,为后续的语法和语义分析奠定基础;句法分析可以剖析句子的结构,明确主谓宾定状补等成分之间的关系,从而更好地理解句子的含义;语义理解则能够深入挖掘文本背后的实际意义,把握合同条款的核心要点,准确提取关键信息 。在分析合同中的付款条款时,NLP 技术能够理解诸如 “乙方应在收到货物后的 30 个工作日内,以电汇方式向甲方支付合同总金额的 80%” 这样复杂的语句,准确提取出付款时间、付款方式和付款比例等关键信息 。

三、合同抽取的重要性

合同抽取技术在众多行业中都有着广泛且不可或缺的应用,对企业和行业的发展意义重大。

在金融行业,合同抽取技术发挥着关键作用。以信贷业务为例,金融机构在处理贷款合同时,需要详细了解借款人的信息、贷款金额、还款方式、利率、担保条款等关键内容 。通过合同抽取技术,能够快速准确地提取这些信息,帮助金融机构更高效地评估贷款风险,制定合理的信贷政策 。在贷款审批流程中,传统的人工审核方式不仅耗时费力,而且容易出现疏漏,导致风险评估不准确 。而合同抽取技术可以在短时间内处理大量贷款合同,为信贷决策提供及时、准确的数据支持,大大提高了贷款审批的效率和准确性,降低了不良贷款的风险 。在保险行业,合同抽取技术同样至关重要 。保险合同中包含了大量关于保险责任、理赔条件、保险费率等关键信息 。通过合同抽取技术,保险公司可以快速提取这些信息,实现对保险业务的精细化管理 。在核保环节,能够更准确地评估风险,确定保险费率;在理赔环节,可以快速核实保险合同条款,判断是否符合理赔条件,提高理赔效率,提升客户满意度 。

在法律行业,合同抽取技术为律师事务所和法务部门带来了极大的便利 。律师在处理合同审查业务时,往往需要花费大量时间和精力仔细研读合同条款,寻找潜在的风险点和法律问题 。合同抽取技术可以辅助律师快速定位关键条款,如合同的生效条件、违约责任、争议解决方式等 。通过对这些关键信息的提取和分析,律师能够更高效地进行合同审查,提高审查质量 。在处理大型商业合同或涉及复杂法律关系的合同案件时,合同抽取技术的优势更加明显 。它可以帮助律师快速梳理合同脉络,把握关键要点,为案件的处理提供有力支持,节省大量的时间和人力成本 。对于企业的法务部门来说,合同抽取技术可以用于合同管理和合规审查 。通过对合同信息的抽取和分析,法务部门可以及时发现合同中的潜在风险,如合同条款与法律法规不符、存在漏洞可能导致纠纷等,提前采取措施进行防范和规避 。同时,合同抽取技术还可以帮助法务部门对合同进行分类管理,方便查询和统计,提高合同管理的效率和水平 。

在电商行业,合同抽取技术也有着重要的应用价值 。电商平台与众多商家和供应商签订了大量的合作合同,这些合同涉及到商品供应、价格、质量、物流、售后服务等多个方面的内容 。通过合同抽取技术,电商平台可以快速提取合同中的关键信息,实现对商家和供应商的有效管理 。在商品采购环节,能够及时了解商品的供应情况、价格波动等信息,优化采购策略;在物流配送环节,可以根据合同约定监督物流服务质量,确保商品按时、准确地送达消费者手中 。合同抽取技术还可以帮助电商平台处理消费者与商家之间的纠纷 。当出现纠纷时,通过快速提取合同中的相关条款,平台可以更准确地判断责任归属,协调双方解决问题,维护平台的良好运营秩序和用户体验 。

从企业运营的宏观角度来看,合同抽取技术可以优化企业的业务流程,提高运营效率 。传统的合同处理方式需要人工进行信息录入、审核、整理等工作,流程繁琐,效率低下 。而合同抽取技术可以实现合同信息的自动化提取和处理,减少人工干预,缩短业务处理周期 。企业在与供应商签订采购合同后,合同抽取技术可以快速提取合同中的交货时间、货物规格、价格等信息,并自动将这些信息传递给采购、仓储、财务等相关部门,实现信息的快速共享和业务流程的无缝衔接 。这样不仅提高了工作效率,还降低了人为错误的风险,使企业能够更快速地响应市场变化,提高竞争力 。合同抽取技术所提取的结构化数据,为企业的数据分析和决策提供了丰富的素材 。企业可以通过对这些数据的深入挖掘,了解业务运营情况,发现潜在的问题和机会 。通过分析合同中的交易数据,企业可以了解市场需求的变化趋势,优化产品结构和营销策略;通过对合同风险数据的分析,企业可以加强风险管理,制定相应的风险防范措施 。这些基于数据的决策能够更加科学合理,有助于企业实现可持续发展 。

四、合同抽取技术原理与实现方式

(一)OCR 技术

OCR(Optical Character Recognition,光学字符识别)技术在合同抽取中扮演着不可或缺的角色,是实现合同文本数字化的关键第一步。其核心原理是通过一系列复杂的图像处理和模式识别算法,将合同图像中的字符转化为计算机能够理解和处理的文本格式 。

在实际应用中,当一份纸质合同被扫描成图像后,OCR 技术首先对图像进行预处理 。这一步就像是为后续的识别工作打扫战场,包括去噪、二值化、倾斜校正等操作 。去噪通过特定的算法去除图像中的噪声点,比如扫描过程中产生的斑点、线条等干扰,使图像更加清晰,让字符的轮廓更加分明,为准确识别提供良好的基础 。二值化则是将彩色或灰度图像转换为只有黑白两色的图像,突出文字与背景的对比度,使得字符更容易被识别算法捕捉 。倾斜校正能够检测并纠正图像的倾斜角度,确保文字行保持水平,避免因图像倾斜导致字符识别错误 。经过预处理的图像,就进入了文字识别阶段 。OCR 系统利用深度学习算法,如卷积神经网络(CNN),对图像中的文字进行特征提取和识别 。CNN 能够自动学习图像中的特征表示,从低级的边缘、纹理特征到高级的形状、结构特征,它可以从图像中识别出各种字体、字号的字符 。以常见的宋体、黑体、楷体等不同字体的文字,OCR 技术都能通过学习其特征模式,准确地将其识别并转化为对应的文本 。在识别过程中,OCR 技术还会结合语言模型,对识别结果进行校正和优化,进一步提高识别的准确性 。当识别出 “金客” 这样可能是 “金额” 的误识别结果时,语言模型会根据上下文和语言习惯,判断出 “金客” 不符合语义逻辑,从而将其纠正为 “金额” 。

(二)自然语言处理(NLP)

自然语言处理(NLP,Natural Language Processing)技术是合同抽取中理解合同文本语义、提取关键信息的核心技术之一,它赋予了计算机理解和处理人类自然语言的能力,让计算机能够像人类一样读懂合同中的条款和内容 。

NLP 技术在合同抽取中的应用涵盖多个层面 。首先是词法分析,它对合同文本进行分词、词性标注和命名实体识别 。分词就是将连续的文本序列按照语义和语法规则分割成一个个独立的单词或词组 。在合同文本 “乙方应在合同签订后的 30 个工作日内支付货款” 中,分词结果可能是 “乙方”“应”“在”“合同签订”“后”“的”“30 个”“工作日”“内”“支付”“货款” 。词性标注则是为每个分词标注其词性,如名词、动词、形容词等,帮助计算机理解单词在句子中的语法角色 。命名实体识别用于识别文本中的特定实体,如人名、公司名、日期、金额等 。在合同中准确识别出合同双方的名称、签订日期、合同金额等关键实体信息,为后续的信息提取和分析奠定基础 。句法分析是 NLP 技术的另一个重要环节,它分析合同文本的句子结构,确定句子的主语、谓语、宾语等成分之间的关系 。通过句法分析,计算机能够理解句子的语法结构,把握句子中各个部分之间的逻辑关系 。对于句子 “甲方于 2024 年 10 月 1 日向乙方交付了货物”,句法分析可以明确 “甲方” 是主语,“交付” 是谓语,“货物” 是宾语,“于 2024 年 10 月 1 日” 是时间状语,“向乙方” 是对象状语,从而更准确地理解句子所表达的含义 。语义理解是 NLP 技术在合同抽取中的核心应用,它深入挖掘合同文本背后的实际意义,把握合同条款的核心要点 。语义理解不仅要理解单个句子的含义,还要理解段落、篇章之间的语义关联,能够综合分析整个合同文本,提取出关键信息 。在分析合同中的违约责任条款时,语义理解能够理解各种复杂的表述方式,准确提取出违约的条件、责任承担方式等关键信息 。即使条款中使用了模糊的语言或隐含的逻辑关系,NLP 技术也能通过语义分析,挖掘出其潜在的含义 。

(三)深度学习算法

深度学习算法作为人工智能领域的核心技术之一,在合同抽取中发挥着至关重要的作用,为提升合同抽取的准确率和效率提供了强大的技术支持 。

深度学习算法在合同抽取中的应用主要体现在模型训练和信息提取两个关键环节 。在模型训练阶段,深度学习算法基于大量的标注合同数据进行学习 。这些标注数据就像是给算法提供的 “学习样本”,每个样本都包含了合同文本以及对应的关键信息标注 。通过对这些数据的学习,深度学习模型能够自动发现合同文本中的特征模式和语义规律 。以卷积神经网络(CNN)为例,它在处理合同图像时,通过多层卷积层和池化层,自动提取图像中文字的特征,从低级的边缘、纹理特征逐渐学习到高级的字符形状、结构特征 。循环神经网络(RNN)及其变体长短期记忆网络(LSTM)、门控循环单元(GRU)在处理合同文本序列时表现出色,它们能够捕捉文本中的上下文信息和语义依赖关系 。LSTM 通过引入记忆单元和门控机制,可以有效地处理长序列文本中的信息,记住前面出现的关键信息,以便在后续的处理中进行综合分析 。在信息提取阶段,经过训练的深度学习模型能够根据学习到的特征模式和语义规律,对新的合同文本进行准确的信息提取 。当输入一份新的合同文本时,模型可以快速定位并提取出合同双方的信息、合同金额、付款方式、违约责任等关键信息 。与传统的基于规则的信息提取方法相比,深度学习算法具有更强的适应性和泛化能力 。传统方法需要人工编写大量复杂的规则,而且对于合同文本格式和语言表达的变化较为敏感,一旦出现新的情况或规则未覆盖的场景,就容易出现提取错误 。而深度学习算法通过自动学习数据中的特征和规律,能够更好地应对合同文本的多样性和复杂性 。即使合同文本中出现了新的术语、表达方式或格式变化,深度学习模型也能凭借其强大的学习能力,准确地提取关键信息 。在实际应用中,为了进一步提高合同抽取的性能,常常会采用多种深度学习算法融合的方式 。将 CNN 用于合同图像的文字识别,提取图像特征;将 LSTM 用于文本序列的语义分析,捕捉上下文信息 。通过这种融合方式,可以充分发挥不同算法的优势,提高合同抽取的准确率和效率 。

五、合同抽取面临的挑战与解决方案

(一)面临挑战

在合同抽取过程中,面临着诸多复杂的挑战,这些挑战给准确、高效地提取合同关键信息带来了不小的阻碍 。

图像质量问题是首要难题之一。由于合同来源广泛,扫描或拍摄条件各异,导致合同图像质量参差不齐 。有些合同可能因扫描设备老旧、分辨率设置过低,使得图像模糊不清,文字边缘虚化,难以准确识别 。合同在长期保存过程中可能出现纸张泛黄、污渍、破损等情况,这些瑕疵会干扰 OCR 技术对文字的识别,增加误识别的概率 。当合同图像存在严重的噪声干扰时,OCR 算法可能会将噪声误判为文字,从而导致识别结果出现大量错误,严重影响后续的信息提取工作 。

版式复杂性也是合同抽取的一大挑战 。合同的版式设计多种多样,没有统一的标准 。有些合同采用传统的单栏排版,而有些则采用复杂的多栏排版,甚至还存在图文混排的情况 。在多栏排版的合同中,不同栏目的内容可能相互关联,也可能相互独立,这给文本的顺序识别和信息定位带来了困难 。图文混排的合同中,图片可能包含重要的信息,如示意图、图表等,如何准确地将图片信息与文字信息结合起来,进行综合分析和理解,是当前合同抽取技术面临的一个难题 。合同中还可能存在各种特殊格式的文本,如页眉、页脚、注释、脚注等,这些文本的位置和内容不固定,且与正文的关联性复杂,增加了信息提取的难度 。

语言和字体的多样性同样不容忽视 。合同通常使用正式、规范的语言,其中包含大量的专业术语、法律词汇和复杂的句子结构 。这些专业词汇和复杂语句对于自然语言处理技术来说,理解和解析的难度较大 。在法律条款中,常常使用一些具有特定法律含义的词汇,如 “不可抗力”“违约责任”“合同标的” 等,这些词汇的准确理解需要深厚的法律知识和语义分析能力 。不同地区、不同行业的合同在语言表达上也存在差异,这进一步增加了语言理解的复杂性 。字体的多样性也给合同抽取带来了挑战 。合同中可能使用各种字体,包括常见的宋体、黑体、楷体,以及一些特殊的艺术字体 。不同字体的形状、笔画粗细、间距等特征各不相同,这对 OCR 技术的字体识别能力提出了很高的要求 。当遇到一些罕见的字体或手写字体时,OCR 技术的识别准确率会大幅下降,从而影响合同信息的准确提取 。

(二)解决方案

针对合同抽取过程中面临的诸多挑战,研究人员和工程师们不断探索和创新,提出了一系列有效的解决方案 。

针对图像质量问题,采用先进的图像处理技术进行图像增强和修复 。在去噪方面,利用高斯滤波、中值滤波等算法去除图像中的噪声点,使图像更加平滑清晰 。高斯滤波通过对图像像素进行加权平均,能够有效地去除高斯噪声,保持图像的细节信息 。中值滤波则是用像素邻域内的中值代替该像素的值,对于去除椒盐噪声等脉冲噪声效果显著 。对于模糊的图像,可以运用图像锐化算法,如拉普拉斯算子、Sobel 算子等,增强图像的边缘和细节,提高文字的清晰度 。拉普拉斯算子通过计算图像的二阶导数,能够突出图像中的高频成分,使文字的边缘更加锐利 。在图像修复方面,基于深度学习的图像修复算法能够有效地填补图像中的破损区域和污渍 。这些算法通过学习大量的图像数据,能够根据破损区域周围的图像信息,自动生成合理的修复内容,恢复图像的完整性 。

为应对版式复杂性,研发了智能版式分析技术 。这种技术能够自动识别合同的版式结构,包括文本的排版方式、栏目划分、图文关系等 。基于深度学习的目标检测算法可以检测出合同中的各种元素,如文本框、图片、表格等,并确定它们的位置和大小 。通过对这些元素的分析和组合,能够构建出合同的版式模型,为后续的信息提取提供准确的位置信息 。在处理多栏排版的合同时,利用文本行检测和分类算法,将不同栏目的文本准确地分离出来,按照正确的顺序进行识别和处理 。对于图文混排的合同,通过图像语义理解技术,分析图片的内容和含义,并将其与相邻的文字信息进行关联,实现图文信息的融合理解 。

在解决语言和字体多样性问题上,一方面,通过构建大规模的领域特定语料库,让自然语言处理模型学习专业术语和行业表达方式 。在法律领域,收集大量的法律法规、合同样本等文本数据,训练语言模型,使其能够准确理解和处理法律条款中的专业词汇和复杂语句 。利用迁移学习技术,将在通用语料库上预训练的语言模型,迁移到合同领域的特定任务中,结合少量的合同标注数据进行微调,提高模型对合同语言的理解能力 。另一方面,针对字体多样性,采用字体识别和字体自适应技术 。通过建立字体库,收集各种常见和特殊字体的样本,训练字体识别模型,使其能够准确识别合同中使用的字体 。在识别过程中,根据识别出的字体类型,自动调整 OCR 算法的参数,以适应不同字体的特征,提高识别准确率 。对于手写字体,利用基于深度学习的手写文字识别技术,通过学习大量的手写字体样本,实现对手写文字的准确识别 。

六、实际案例分析

为了更直观地展示合同抽取技术的应用效果,我们来看几个不同行业的实际案例 。

(一)金融行业案例

山东某民营银行在票据贴现业务中面临着巨大的挑战 。该行每月需要审核 300 - 500 份版式各异的融资材料合同,不仅要审核交易背景的真实性,还要确保合同内容与票据相符 。以往,这些工作主要依赖人工完成,审核人员需要手动检索合同中的关键信息,如签订主体、签订日期、合同编号、合同金额、落款签章、合同盖章等,然后进行逐一审核 。这一过程不仅工作量巨大,而且容易出现疏漏,导致错误率较高,同时也增加了法律风险 。

为了解决这些问题,该行引入了合合信息的合同机器人 。合同机器人基于智能图像处理、深度学习的复杂场景文字识别、自然语言处理等智能文字识别技术,具备强大的合同抽取和审核能力 。该行通过自定义配置抽取字段,合同机器人能够从不同文件格式与版式的合同中智能抽取关键信息 。在审核过程中,合同机器人还能使用 “合同审核” 功能对抽取字段进行自动化规则审核,判断是否为空值、关键信息间是否一致、是否包含关键词等 。如果合同未通过合同机器人系统审查,则进入人工复审流程,审核人员仅需基于系统提示的不通过信息字段进行二次复核,选择 “复审通过” 或 “复审退回” 即可 。

引入合同机器人后,该行的审核效率得到了极大提升 。原本需要耗费大量时间和精力的手动检索信息与审核工作,现在大部分都可以由合同机器人自动完成,审核人员的工作量大幅减轻 。合同机器人的自动化规则审核降低了错误率,有效降低了法律风险 。审核人员的工作体验也有了质的提升,他们可以将更多的时间和精力投入到更有价值的工作中 。

(二)医疗行业案例

在一家大型医疗中心,信息技术部门面临着整合各科室病例的难题 。医院的病例包含了丰富的信息,如病史、治疗方案和检验结果等,但这些信息通常以非结构化的文本形式存在,分散在各个科室的文档中,难以进行统一管理和分析 。医生和研究人员在处理这些信息时,往往需要花费大量时间进行手动整理和分析,效率低下且容易出错 。

为了解决这一问题,医院引入了思通数科的信息抽取与知识图谱平台 。该平台利用信息抽取技术,基于深度学习算法,能够快速提取病例中的关键数据 。通过实体识别技术,准确识别出病例中的疾病名称、药物名称、医疗程序等实体;利用关系抽取技术,理解实体之间的联系,如患者与疾病、药物与治疗效果之间的关系;通过事件抽取技术,追踪患者经历的医疗事件,如手术、治疗反应等 。这些提取出来的关键数据随后被整合到知识图谱中,知识图谱以可视化的方式展示了数据之间的关联,使医生能够在短时间内获取患者的完整信息 。

通过引入该平台,医院实现了医疗文档的自动化处理 。信息处理的效率和准确性得到了极大提高,医生和研究人员可以更加专注于患者的治疗和研究工作 。据统计,该平台的识别率达到了 95% 以上,显著提高了医生的决策效率,病例检索时间减少了 60% ,为医疗服务和医学研究提供了有力支持 。

(三)制造业案例

某大型制造企业与众多供应商签订了大量的采购合同 。这些合同包含了丰富的信息,如供应商信息、采购产品的规格、数量、价格、交货时间、质量标准等 。在以往的合同管理中,企业主要依靠人工对合同进行处理和分析,这导致合同处理周期长,效率低下 。在采购旺季,大量合同的涌入使得人工处理难以应对,容易出现交货延迟、产品质量问题等风险 。而且,人工处理合同难以对合同数据进行深入分析,无法为企业的采购决策提供有力支持 。

为了提升合同管理效率,该企业采用了基于 OCR 和 NLP 技术的合同抽取系统 。OCR 技术将扫描的合同图像转化为可编辑的文本,NLP 技术对文本进行深入分析,提取出关键信息 。系统能够准确识别出合同中的供应商名称、地址、联系方式,采购产品的详细规格、数量、价格,交货时间和地点,质量标准和验收方式等关键信息 。这些信息被自动录入到企业的采购管理系统中,实现了合同信息的快速共享和业务流程的无缝衔接 。

引入合同抽取系统后,该企业的合同处理效率大幅提高 。合同处理周期从原来的平均一周缩短到了两天以内,大大提高了采购业务的响应速度 。系统对合同信息的准确提取,减少了因信息错误或遗漏导致的交货延迟和产品质量问题,降低了采购风险 。通过对合同数据的深入分析,企业能够更好地了解供应商的表现,优化采购策略,降低采购成本 。企业可以根据合同数据评估供应商的交货准时率、产品合格率等指标,选择更优质的供应商进行长期合作;通过分析采购产品的价格趋势,合理安排采购计划,降低采购成本 。

七、合同抽取工具推荐

在合同抽取领域,市面上涌现出了许多优秀的工具,它们各具特色和优势,能够满足不同用户的多样化需求 。

合合信息 TextIn 合同抽取是一款备受瞩目的工具 。它基于合合信息强大的文字识别能力,融合了文档解析、文档检索和文本生成三项核心技术 。其优势显著,拥有强大的信息抽取引擎,结合自研版面分析引擎,能够准确还原文档中复杂表格、双栏排版等结构,实现多种合同场景下非结构化文档的高精度信息抽取 。在处理多栏排版且包含复杂表格的合同文档时,TextIn 合同抽取能够精准识别和提取其中的关键信息,准确率高达 95% 以上 。它还支持自定义抽取字段,无需标注训练,便能自动完成各类合同关键信息抽取 。无论是常见的商业合同、租赁合同,还是复杂的金融合同、法律合同,用户都可以根据自身需求灵活配置抽取字段,轻松获取所需信息 。该工具全面支持 pdf、doc、xls、图像等格式的文档抽取,覆盖合同生命周期全场景 。从合同的起草、签订,到执行、存档,各个环节的文档都能进行高效处理 。它还支持对多文档抽取的关键信息做比对,关键信息跨文档连线,一目了然 。在企业进行合同审查时,能够快速发现不同版本合同之间的差异,为决策提供有力支持 。

文通大模型 OCR 智能文档抽取系统也表现出色 。依托自主研发的先进 OCR 文字识别技术与大模型数据抽取能力,它能够快速从多种格式的文档中提取关键信息 。该系统提供三种大模型抽取功能:合同抽取、通用抽取和形式发票抽取 。在合同抽取方面,它能够自动提取如签约方、合同金额、签署日期、合同条款等关键信息,帮助用户快速获取合同中的核心数据 。对于一份复杂的商业合同,系统可以在短短几分钟内准确提取出所有关键信息,大大提高了工作效率 。通用抽取功能适用于各类非标准化文档,能从订单、法律文书、企业内部资料等文档中提取如日期、金额、公司名称等字段,满足不同企业场景的需求 。在处理企业内部的采购订单时,系统能够准确提取出订单编号、采购商品信息、供应商名称等关键信息,为企业的采购管理提供便利 。形式发票抽取功能针对国际贸易中的形式发票,能够提取发票中的关键信息,如货物描述、数量、价格、卖方与买方信息等,以便于跨境贸易的管理和处理 。凭借领先的 OCR 识别技术,该系统支持简繁体、印刷、手写等多种文字类型的识别,单字识别率高达 99.98%,提供行业领先的识别精度和效率 。无论是标准化的合同条款,还是复杂的手写签名和手工填写的表格,都能精准提取 。它还支持多种常见文档格式的处理,包括 PDF、JPG、PNG、Word、BMP 等,并能够导出 JSON、TXT、Excel、双层 PDF 文件等多种数据格式,满足不同客户的需求 。

飞桨文字识别开发套件 PaddleOCR 在合同抽取领域也有着广泛的应用 。针对自然场景下的 OCR 任务,它提供面向产业级的超轻量通用 OCR 系统 PP-OCRv3,经过海量数据训练,达到产业级 SOTA,在工业制造、交通等行业中得到广泛验证 。针对文档场景,它提供智能文档分析系统 PP-Structurev2,实现表格识别、关键信息提取、版面分析与恢复任务 。在处理扫描版合同关键信息抽取任务时,PaddleOCR+PaddleNLP 可以快速提取文本内容,经过少量数据微调即可准确抽取关键信息,高效完成合同内容对比、合规性检查、风险点识别等任务,提高效率,降低风险 。对于一份存在部分模糊字迹和复杂版式的合同,PaddleOCR 能够通过其强大的算法准确识别文字内容,PaddleNLP 则能深入理解文本语义,准确提取出关键信息,为企业的合同管理提供可靠支持 。它还打通了从数据合成标注、模型训练到推理部署的应用全流程,提供 22 种训练部署方式,半自动标注工具 PPOCRLabel,《动手学 OCR》电子书以及丰富的场景应用和前沿算法,通过全流程的开发体验助力产业界快速落地 OCR 应用 ,方便用户根据自身需求进行定制和优化 。

八、未来发展趋势

展望未来,合同抽取技术将朝着更加智能化、高效化、多元化的方向发展,为各行业带来更多的创新和变革。

在多语言支持方面,随着全球化进程的加速,企业的业务范围不断拓展,涉及到的合同语言种类也日益增多。未来的合同抽取技术将具备更强大的多语言处理能力,能够准确处理多种语言的合同文本,实现跨语言的信息提取和分析。无论是中文、英文、法文、德文等常见语言,还是一些小众语言的合同,都能高效地进行处理,打破语言障碍,促进全球范围内的商业合作 。

实时识别能力也将成为合同抽取技术发展的重要方向 。随着计算机硬件性能的不断提升和算法的优化,合同抽取技术将能够实现对合同的实时处理 。在合同签订现场、业务办理过程中,能够即时提取合同关键信息,快速完成审核和分析,大大提高业务处理的时效性 。在金融机构的贷款审批业务中,当客户提交贷款合同后,合同抽取技术可以瞬间提取关键信息,帮助审批人员快速做出决策,缩短贷款审批周期,提升客户体验 。

合同抽取技术与其他技术的融合也将进一步深化 。与区块链技术融合,能够确保合同信息的安全性、完整性和不可篡改,实现合同的智能合约和自动化执行 。当合同中的某些条件满足时,区块链智能合约可以自动触发相应的执行操作,如付款、发货等,减少人为干预,提高合同执行的准确性和效率 。与物联网技术融合,能够实现合同信息与实物资产的实时关联 。在供应链管理中,通过物联网设备采集货物的运输、存储等信息,并与合同中的相关条款进行实时比对,及时发现异常情况,保障供应链的顺畅运行 。与知识图谱技术融合,能够构建更加全面、准确的合同知识图谱,为企业提供更深入的数据分析和决策支持 。通过知识图谱,可以直观地展示合同中各信息之间的关联关系,帮助企业更好地理解合同内容,挖掘潜在的商业价值 。

九、总结

合同抽取技术作为数字化时代的关键技术,在企业运营中具有不可替代的重要性 。它通过 OCR 技术和自然语言处理技术,能够从复杂的合同文本中高效、准确地提取关键信息,将非结构化数据转化为结构化数据,为企业的合同管理、风险评估、数据分析等工作提供了有力支持 。在金融、法律、电商等众多行业,合同抽取技术都发挥着重要作用,优化了业务流程,提高了运营效率,为企业的决策提供了科学依据 。尽管合同抽取技术在发展过程中面临着图像质量、版式复杂性、语言和字体多样性等诸多挑战,但通过先进的图像处理技术、智能版式分析技术以及针对语言和字体的优化技术,这些问题正在逐步得到解决 。从实际案例来看,合同抽取技术已经在多个行业取得了显著的应用成果,为企业带来了实实在在的效益 。随着技术的不断进步,合同抽取技术将朝着多语言支持、实时识别以及与其他技术深度融合的方向发展,为各行业的数字化转型和创新发展注入新的活力 。因此,无论是企业还是相关技术从业者,都应密切关注合同抽取技术的发展动态,积极探索其在实际业务中的应用,充分发挥其优势,以提升企业的竞争力和创新能力,在数字化浪潮中抢占先机 。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值