机器视觉
Joemt
这个作者很懒,什么都没留下…
展开
-
opencv实现自己训练的Adaboost(Haar-like)检测识别库
前几周在网上看到了利用opencv自带的人脸检测xml文件,实现人脸检测。最后想通过自己的训练来实现人脸检测,从而扩展到实现其他目标检测。在网上也看到了许多资料,都讲得特别好。我这里做个总结,防止忘记。首先是环境:win10+vs2013+opencv-2.4.13+cmake-3.8.0这里我想多说两句,由于opencv3.x没有源文件没有haartraining源文件,因此只能选择opencv2原创 2017-12-11 21:42:47 · 1480 阅读 · 0 评论 -
双边平滑滤波
双边滤波器是一种非线性滤波器,是将空间滤波和灰度值合并进行滤波,不仅可以对图像进行平滑处理,还可以保留图像中边缘信息。 可以将其理解为: 一个函数由像素欧式距离决定滤波器模板的系数【高斯滤波器(Gaussian Filter)】:高斯滤波器只考虑像素间的欧式距离,其使用的模板系数随着和窗口中心的距离增大而减小另一个函数由像素的灰度差值决定滤波器的系数【α-截尾均值滤波器(Alpha-Tri...原创 2018-08-05 22:25:16 · 1076 阅读 · 0 评论 -
图像畸变校准
在做图像测距时,由于相机获取的图像或多多少会有图像畸变,此时为了提高测量精度,需要对图像畸变进行校准,利用获取的相机内部参数,便可以对图像畸变进行校准。我这里利用张氏标定箱获取的相机的内部参数,获得参数有相机参数(fx,fy,cx,cy)与畸变参数(k1、k2、p1、p2、k3)。A =[1426.669 0 654.437; 0 ...原创 2019-04-05 00:42:52 · 794 阅读 · 1 评论 -
BP神经网络 Python理解及实现
空闲期,闲来无事,把最基础的BP神经网络写一遍。前向网络传递比较简单,直接矩阵相乘,这里忽略。主要说反向网络传递:1:输出网络误差 = 输出层损失函数导数 * 损失函数2:隐含层网络误差 = 输出层损失函数导数 * (下一层误差 * 中间权重)3:权重更新 = 原始权重 + 学习率 * (前分支转置 * 后误差)4:偏置更新 = 原始偏置 + 学习率 * (前分支转置 * 后误差)实...原创 2019-04-20 18:00:36 · 759 阅读 · 8 评论