[Algorithm]九章三:Binary Tree & Divide Conquer

97.Maximam Depth of Binary Tree: 点击打开链接

/* Definition of TreeNode:
 * public class TreeNode {
 *     public int val;
 *     public TreeNode left, right;
 *     public TreeNode(int val) {
 *         this.val = val;
 *         this.left = this.right = null;
 *     }
 * }
 */
public class Solution {
    /**
     * @param root: The root of binary tree.
     * @return: An integer.
     */
     
    public int maxDepth(TreeNode root) {
       if(root==null){                             //出口:就是一眼就能看出结果的
           return 0;
       }
       
       int leftDepth=maxDepth(root.left);          //先无脑地得到左子树的高度
       int rightDepth=maxDepth(root.right);        //再无脑地得到右子树的高度
       return Math.max(leftDepth,rightDepth)+1;    
    }
}

155.Minimum Depth of Binary Tree:点击打开链接

思路:计算左子树和右子树深度的时候,要先判断是否等于0,如果等于0,就说明这边的子树不存在,可以认为这边子树的深度为无限大,

         因此整个树的最小深度要看另一边有子树的深度

注意:出现斜树的情况,就是说只有左子树或者只有右子树的时候,这时候明显没有子树的这一边深度为0,但是不能说此时树的最小深度为0

         这种情况下,就按有子树的那边的最小深度来计

/**
 * Definition of TreeNode:
 * public class TreeNode {
 *     public int val;
 *     public TreeNode left, right;
 *     public TreeNode(int val) {
 *         this.val = val;
 *         this.left = this.right = null;
 *     }
 * }
 */
public class Solution {
    /**
     * @param root: The root of binary tree.
     * @return: An integer.
     */
    public int minDepth(TreeNode root) {
        if(root==null){
            return 0;
        }
        int leftDepth=minDepth(root.left);
        int rightDepth=minDepth(root.right);
        return (leftDepth==0 || rightDepth==0) ? leftDepth+rightDepth+1 : Math.min(leftDepth,rightDepth)+1;
    }
}

101. Symmetric Tree (LeetCode)

Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).

For example, this binary tree [1,2,2,3,4,4,3] is symmetric:

    1
   / \
  2   2
 / \ / \
3  4 4  3

But the following [1,2,2,null,3,null,3] is not:

    1
   / \
  2   2
   \   \
   3    3

Note:
Bonus points if you could solve it both recursively and iteratively.

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    public boolean isSymmetric(TreeNode root) {   
        if(root == null)
        {
            return true;
        }
        return isMirror(root.left, root.right);
    }

    //Note: 这是一道由孩子结点,深入判断到孩子的孩子结点层次的题
    private boolean isMirror(TreeNode p, TreeNode q)
    {
        if(p == null && q == null)
        {
            return true;
        }
        
        if(p != null && q !=null)  
        {
            return p.val == q.val 
                   && isMirror(p.left, q.right) && isMirror(p.right,q.left);
        }
        return false;
    }
}

 

112. Path Sum

Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all the values along the path equals the given sum.

For example:
Given the below binary tree and sum = 22,

              5
             / \
            4   8
           /   / \
          11  13  4
         /  \      \
        7    2      1

return true, as there exist a root-to-leaf path 5->4->11->2 which sum is 22.

 

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
    public boolean hasPathSum(TreeNode root, int sum) {
        if(root==null){
            return false;
        }
        
        if(root.left==null && root.right==null){
            if(root.val==sum){
                return true;
            }
        }        
        return hasPathSum(root.left,sum-root.val) || hasPathSum(root.right,sum-root.val);
    }
}

 

113.Path Sum II

Given a binary tree and a sum, find all root-to-leaf paths where each path's sum equals the given sum.

For example:
Given the below binary tree and sum = 22,

              5
             / \
            4   8
           /   / \
          11  13  4
         /  \    / \
        7    2  5   1

return

[
   [5,4,11,2],
   [5,8,4,5]
]

 思路:当根节点下面没有左右节点的时候,判断根节点的值是不是等于给定sum

          如果根节点有左右节点的时候,递归判断

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
    public List<List<Integer>> pathSum(TreeNode root, int sum) {
        List<List<Integer>> result=new ArrayList<>();
        List<Integer> path=new ArrayList<>();
        if(root==null){
            return result;
        }
        helper(root,sum,result,path);
        return result;
        
    }
    
    private void helper(TreeNode root, int sum,List<List<Integer>> result,List<Integer> path){
        if(root==null){
           return; 
        }
        if(root.left==null && root.right==null){
            if(root.val==sum){
                path.add(root.val);
                result.add(path);
                return;
            }     
        }
        if(root.left!=null){
            List<Integer> leftPath=new ArrayList<>(path);
            leftPath.add(root.val);
            helper(root.left,sum-root.val,result,leftPath);
        }
        if(root.right!=null){
            List<Integer> rightPath=new ArrayList<>(path);
            rightPath.add(root.val);
            helper(root.right,sum-root.val,result,rightPath);
        }
    }
}
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {

    //全局的results更好理解,只要满足条件的list就加进去结果results里面
    List<List<Integer>> results = new ArrayList<>(); 
    
    public List<List<Integer>> pathSum(TreeNode root, int sum) {
        
        List<Integer> list = new ArrayList<>();
        
        if(root == null)
        {
            return results;
        }
        
        getPath(list, root, sum);
        
        return results;
    }
    
    private void getPath(List<Integer> list, TreeNode root, int sum)
    {       
        //st<List<Integer>> results = new ArrayList<>();
        if(root == null)
        {
            return;
        }
        
        if(root.left == null && root.right == null)
        {
            if(root.val == sum)
            {                
                list.add(root.val);
                results.add(list);
                return;
            }            
        }
        
        if(root.left != null)
        {
            List<Integer> leftList = new ArrayList<>(list);
            leftList.add(root.val);
            getPath(leftList, root.left, sum - root.val);
        }
        
        if(root.right != null)
        {
            List<Integer> rightList = new ArrayList<>(list);
            rightList.add(root.val);
            getPath(rightList, root.right, sum - root.val);
        }
        
    }

}

437. Path Sum III

You are given a binary tree in which each node contains an integer value.

Find the number of paths that sum to a given value.

The path does not need to start or end at the root or a leaf, but it must go downwards (traveling only from parent nodes to child nodes).

The tree has no more than 1,000 nodes and the values are in the range -1,000,000 to 1,000,000.

Example:

root = [10,5,-3,3,2,null,11,3,-2,null,1], sum = 8

      10
     /  \
    5   -3
   / \    \
  3   2   11
 / \   \
3  -2   1

Return 3. The paths that sum to 8 are:

1.  5 -> 3
2.  5 -> 2 -> 1
3. -3 -> 11

思路:这题和I,II不同之处在于,符合条件的不仅仅是从root开始,任意node开始的都算数

         因此最后的结果分为三部分情况:root开始的+root.left开始的+root.right开始的

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
    public int pathSum(TreeNode root, int sum) {
        if (root==null) {
            return 0;
        }
        return helper(root,sum)+pathSum(root.left,sum)+pathSum(root.right,sum); 
    }                                                   //最后是以根节点开始的+以根节点的左孩子开始的+以根节点的右孩子开始的
    
    private int helper(TreeNode root, int sum) {
        if (root==null){
            return 0;
        }       
        int left=helper(root.left, sum-root.val);
        int right=helper(root.right, sum -root.val);
        return (root.val==sum?1:0)+left+right;          //以根节点开始的符合要求的串
    }
}
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     public int val;
 *     public TreeNode left;
 *     public TreeNode right;
 *     public TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
    
    private int totalNums = 0;
    
    public int PathSum(TreeNode root, int sum) {
        if(root == null)        
        {
            return 0;
        }
        
        if(root != null)
        {
            GetValidNums(root, sum);
        }        
        if(root.left != null)
        {
           totalNums = PathSum(root.left, sum);
        }
        if(root.right != null)
        {
           totalNums = PathSum(root.right, sum);
        }
        
        return totalNums;        
    }
    
    // 某node开始的符合条件的path总数
    private void GetValidNums(TreeNode root, int sum)
    {
        if(root.val == sum)        
        {
            totalNums++;
        }
        
        if(root.left != null)
        {
            GetValidNums(root.left, sum-root.val);
        }
        if(root.right != null)
        {
            GetValidNums(root.right, sum-root.val);
        }
    }
}

 

480. Binary Tree Paths:点击打开链接

/**
 * Definition of TreeNode:
 * public class TreeNode {
 *     public int val;
 *     public TreeNode left, right;
 *     public TreeNode(int val) {
 *         this.val = val;
 *         this.left = this.right = null;
 *     }
 * }
 */
public class Solution {                                        //divide & conquer方法
    /**
     * @param root the root of the binary tree
     * @return all root-to-leaf paths
     */
        //递归的定义:以root出发的从头到尾的路径
    public List<String> binaryTreePaths(TreeNode root) {       
        List<String> results=new ArrayList<>();
        //递归的出口
        if(root==null){
            return results;
        }
        if(root.left==null && root.right==null){
            results.add(root.val+"") ;                         //注意结果是要字符串,加""使结果转变为字符串
        }

        //递归的拆解 divide & conquer
        List<String> leftPaths=binaryTreePaths(root.left);     //先不管三七二十一得到左子树的所有路径
        List<String> rightPaths=binaryTreePaths(root.right);   //然后再得到右子树所有路径
        
        //merge
        for(String path:leftPaths){
           results.add(root.val+"->"+path);
        }
        for(String path:rightPaths){
           results.add(root.val+"->"+path);
        }
        return results;
    }
}

376. Binary Tree Path Sum

/**
 * Definition of TreeNode:
 * public class TreeNode {
 *     public int val;
 *     public TreeNode left, right;
 *     public TreeNode(int val) {
 *         this.val = val;
 *         this.left = this.right = null;
 *     }
 * }
 */
public class Solution {
    public List<List<Integer>> binaryTreePathSum(TreeNode root, int target) {  
        List<List<Integer>> result=new ArrayList<>();  
        List<Integer> path=new ArrayList<>();  
        if(root==null){  
            return result;  
        } 
        path.add(root.val);                                            //先装入root.val再进行helper递归
        helper(root,target,root.val,result,path);  
        return result; 
    }  
      
    private void helper(TreeNode root,int target,int sum,List<List<Integer>> result,List<Integer> path){  
        if(root.left==null && root.right==null){  
            if(sum==target){  
                result.add(new ArrayList<Integer>(path));  
            } 
            return;  
        }  
        if(root.left!=null){  
            path.add(root.left.val);  
            helper(root.left,target,sum+root.left.val,result,path); 
            path.remove(path.size()-1);
        }  
        if(root.right!=null){  
            path.add(root.right.val);  
            helper(root.right,target,sum+root.right.val,result,path); 
            path.remove(path.size()-1);  
        }  
    }    
}

246.Binary tree  Path Sum II

/**
 * Definition of TreeNode:
 * public class TreeNode {
 *     public int val;
 *     public TreeNode left, right;
 *     public TreeNode(int val) {
 *         this.val = val;
 *         this.left = this.right = null;
 *     }
 * }
 */
public class Solution {
    /**
     * @param root the root of binary tree
     * @param target an integer
     * @return all valid paths
     */
    public List<List<Integer>> binaryTreePathSum2(TreeNode root, int target) {
            List<List<Integer>> result=new ArrayList<>();
            return differentRoot(root,target,result);
    }

    public  List<List<Integer>> differentRoot(TreeNode root, int target,List<List<Integer>> result){
        if(root==null) return result;
        helper(root,target,result,new ArrayList<>());

        if(root.left!=null){
            differentRoot(root.left,target,result);
        }
        if(root.right!=null){
            differentRoot(root.right,target,result);
        }
        return result;
    }

    //find all result in the path from this root
    public  void helper(TreeNode root, int target,List<List<Integer>> result,List<Integer> list){
        if(target==root.val){
            List<Integer> temp= new ArrayList<>(list);
            temp.add(root.val);
            result.add(temp);
        }
        if(root.left!=null){
            list.add(root.val);
            helper(root.left,target-root.val,result,list);
            list.remove(list.size()-1);
        }
        if(root.right!=null){
            list.add(root.val);
            helper(root.right,target-root.val,result,list);
            list.remove(list.size()-1);
        }
    }
}

596.Binary tree Maximum Path Sum II

思路:根据题目说明,至少会有root是最大值,因此在递归定义:以root为根的路径中和最大者,路径不一定是完整的,随时可以终止

所以要比较root值与以root为根的所有路径的值

/**
 * Definition of TreeNode:
 * public class TreeNode {
 *     public int val;
 *     public TreeNode left, right;
 *     public TreeNode(int val) {
 *         this.val = val;
 *         this.left = this.right = null;
 *     }
 * }
 */

public class Solution {
    /*
     * @param root: the root of binary tree.
     * @return: An integer
     */
    public int maxPathSum2(TreeNode root) {
        if(root==null){
            return 0;
        }
        
        int maxVal=Integer.MIN_VALUE;
        int sum=Math.max(root.val,(root.val+Math.max(maxPathSum2(root.left),maxPathSum2(root.right))));
        if(sum>maxVal){
           maxVal=sum; 
        }
        return maxVal;
    }
}

596.Minimum Subtree:点击打开链接

/**
 * Definition of TreeNode:
 * public class TreeNode {
 *     public int val;
 *     public TreeNode left, right;
 *     public TreeNode(int val) {
 *         this.val = val;
 *         this.left = this.right = null;
 *     }
 * }
 */
public class Solution {
    /**
     * @param root the root of binary tree
     * @return the root of the minimum subtree
     */
    private int subtreeSum=Integer.MAX_VALUE;
    private TreeNode subtree=null;
    
    public TreeNode findSubtree(TreeNode root) {
        helper(root);
        return subtree;
    }
    
    private int helper(TreeNode root){
        if(root==null){
           return 0; 
        }
        
        int sum=root.val+helper(root.left)+helper(root.right);       //这个这一步就完成了divide & conquer,merge
        
        if(sum<subtreeSum){                                          //然后遍历打擂
            subtreeSum=sum;
            subtree=root;
        }
        return sum;
    }
}
/**
 * Definition of TreeNode:
 * public class TreeNode {
 *     public int val;
 *     public TreeNode left, right;
 *     public TreeNode(int val) {
 *         this.val = val;
 *         this.left = this.right = null;
 *     }
 * }
 */
public class Solution {
    /**
     * @param root the root of binary tree
     * @return the root of the minimum subtree
     */
    
    private int subtreeSum=Integer.MAX_VALUE;
    private TreeNode subRoot=null;
    
    public TreeNode findSubtree(TreeNode root) {
        helper(root);
        return subRoot;
    }
    
    private int helper(TreeNode root){
        if(root==null){
            return 0;
        }
        if(root.left==null && root.right==null){               //这部分可以不写,因为下面的情况已经包含这个case
            int sum= root.val;
            if(sum<subtreeSum){
                subtreeSum=sum;
                subRoot=root;
            }  
            return root.val; 
        }
        int sum=root.val+helper(root.left)+helper(root.right);
        if(sum<subtreeSum){
            subtreeSum=sum;
            subRoot=root;
        }
        return sum;
    }
}

597.Subtree with Maximum Average:  点击打开链接

/**
 * Definition of TreeNode:
 * public class TreeNode {
 *     public int val;
 *     public TreeNode left, right;
 *     public TreeNode(int val) {
 *         this.val = val;
 *         this.left = this.right = null;
 *     }
 * }
 */
public class Solution {
    /**
     * @param root the root of binary tree
     * @return the root of the maximum average of subtree
     */
    private class ResultType{                               //创建内部类封装sum,size
        int sum,size;
        public ResultType(int sum,int size){
            this.size=size;
            this.sum=sum;
        }
    }
    
    private ResultType subtreeResult=null;
    private TreeNode subtree=null;
    
    public TreeNode findSubtree2(TreeNode root) {
        helper(root);
        return subtree;
    }
    
    public ResultType helper(TreeNode root){
       if(root==null){
           return new ResultType(0,0);
       }
       
       ResultType leftResult=helper(root.left);
       ResultType rightResult=helper(root.right);
       ResultType result=new ResultType(leftResult.sum+rightResult.sum+root.val,
                                        leftResult.size+rightResult.size+1);
        
       if(subtree==null || result.sum*subtreeResult.size>subtreeResult.sum*result.size){  
            subtreeResult=result;                          //防止除数为0,写成交叉相乘的方法
            subtree=root;
       }
       return result;
    }
}

236. Lowest Common Ancestor of a Binary Tree

 

/**
 * Definition of TreeNode:
 * public class TreeNode {
 *     public int val;
 *     public TreeNode left, right;
 *     public TreeNode(int val) {
 *         this.val = val;
 *         this.left = this.right = null;
 *     }
 * }
 */
public class Solution {                                                            //no parent pointer
    /**
     * @param root: The root of the binary search tree.
     * @param A and B: two nodes in a Binary.
     * @return: Return the least common ancestor(LCA) of the two nodes.
     */
    public TreeNode lowestCommonAncestor(TreeNode root, TreeNode A, TreeNode B) {
        if(root==null || root==A || root==B){
            return root;
        }
        
        TreeNode left=lowestCommonAncestor(root.left, A, B);     
        TreeNode right=lowestCommonAncestor(root.right, A, B);
        
        if(left!=null && right!=null){                                             //左右都不空,返回它们的root
            return root;
        }
        if(left!=null){                                                            //左不空,也就是左不空,同时右空
            return left;
        }
        if(right!=null){                                                           //右不空,也就是右不空,同时左空
            return right;
        }
        //if(left==null && right==null){      
        //    return null;
        //}
        return null;
    }
}

474. Lowest Common Ancestor II : 点击打开链接

/**
 * Definition of ParentTreeNode:
 * 
 * class ParentTreeNode {
 *     public ParentTreeNode parent, left, right;
 * }
 */
public class Solution {                                      //with parent pointer
    /**
     * @param root: The root of the tree
     * @param A, B: Two node in the tree
     * @return: The lowest common ancestor of A and B
     */
    public ParentTreeNode lowestCommonAncestorII(ParentTreeNode root,
                                                 ParentTreeNode A,
                                                 ParentTreeNode B) {
                                                     
        ArrayList<ParentTreeNode> pathA=getPaths(A);        //拿到两条path
        ArrayList<ParentTreeNode> pathB=getPaths(B);
        
        int indexA=pathA.size()-1;                          //两个ArrayList里从后往前比较
        int indexB=pathB.size()-1;                          //因为tree装在ArrayList的时候,是先装孩子,再向上遍历拿到父母装父母
        
        ParentTreeNode lowestAncestor=null;
        while(indexA>=0 && indexB>=0){                      
            if(pathA.get(indexA)!=pathB.get(indexB)){       //只要是两条path拿到的当前值不一样,就停止
                break;
            }
            lowestAncestor=pathA.get(indexA);               //不断打擂找lowestAncestor
            indexA--;
            indexB--;
        }
        return lowestAncestor;
    }
    
    private ArrayList<ParentTreeNode> getPaths(ParentTreeNode node){
        ArrayList<ParentTreeNode> result=new ArrayList<>();
        while(node!=null){
            result.add(node);
            node=node.parent;
        }
        return result;
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值