机器学习知识点整理合集
无
oh__NO
这个作者很懒,什么都没留下…
展开
-
L0、L1与L2范数、核范数
L0、L1与L2范数、核范数今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化。我们先简单的来理解下常用的L0、L1、L2和核范数规则化。最后聊下规则化项参数的选择问题。这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文。知识有限,以下都是我一些浅显的看法,如果理解存在错误,希望大家不吝指正。谢谢。 监督机器学习问题无非就是"minimizeyou...转载 2019-03-28 19:49:27 · 805 阅读 · 0 评论 -
核函数
对于优化问题:...转载 2019-03-28 20:34:01 · 1648 阅读 · 1 评论 -
矩阵的理解
这是很早以前已经看过的,最近无意中又把保存的文章翻出来时,想起很多朋友问过矩阵,虽对矩阵似懂非懂,但却很想弄懂它,希望这几篇文章能帮你一下,故转之:(一)前不久chensh出于不可告人的目的,要充当老师,教别人线性代数。于是我被揪住就线性代数中一些务虚性的问题与他讨论了几次。很明显,chensh觉得,要让自己在讲线性代数的时候不被那位强势的学生认为是神经病,还是比较难的事情。可怜的ch...转载 2019-03-28 20:36:01 · 1290 阅读 · 0 评论 -
推荐系统中的矩阵分解| 奇异值分解及改进、因子分解机
网络中的信息量呈现指数式增长,随之带来了信息过载问题。推荐系统是大数据时代下应运而生的产物,目前已广泛应用于电商、社交、短视频等领域。本文将针对推荐系统中基于隐语义模型的矩阵分解技术来进行讨论。目录1. 评分矩阵、奇异值分解与Funk-SVD2. 随机梯度下降法3. 基于Funk-SVD的改进算法4. 因子分解机5. 与DNN的结合6. 矩阵分解的优缺点7. 总结参考文献...原创 2019-04-02 16:11:20 · 2352 阅读 · 1 评论