提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
问题描述
思路 :差分方法
根据题目的意思,给出一个做核酸的时间q,要计算出能出行的计划个数。我写的方法是暴力法,只过了70。
搜了下其他人的解法,发现使用差分的方法可以减少很多时间。
差分解法过程
设 q 时刻做核算;t,k , c 分别代表 t 时刻进入某场所,k 小时出核酸结果,场所需要持 c 小时以内的核酸证明。
因此能够通行需要满足的条件 : q + k <= t <= q + k + c - 1 ; ①
通过不等式变形为 : t - k - c + 1 <= q <= t - k ; ②
因此对于某个出行计划而言, q时刻做核酸只要满足 ② 式子即可通行。
具体过程:
- 需要定义一个数组res用于存储 i 时刻做核酸可以通过的计划数目。因为在出行计划输入时,即可根据 ②算出满足该计划出行的做核酸的范围[a,b];
- 再将res数组中下标范围从 [a,b] 进行 + 1;[a,b]+1 利用差分的方法,例如[4, 9],只需要让res[4] + 1, res[10] - 1;
- 然后让res数组求前缀和 :res[i] = res[i-1] + res[i] ;
- 接着对于输入的q 只需返回res[q]即可。
代码
#include<iostream>
#include<vector>
#include<unordered_map>
using namespace std;
int main(){
int n,m,k;
cin>>n>>m>>k;
vector<int> res(200001,0);
for(int i = 0; i < n; i++){
int t,c;
cin>>t>>c;
int l,r;
l = max(t - k - c + 1, 0);
r = max(t - k, 0);
res[l] += 1;
res[r+1] -= 1;
}
for(int i = 1 ; i < 200001; i++){
res[i] = res[i - 1] + res[i];
}
for(int i = 0; i < m ;i++) {
int q;
cin >> q;
cout<<res[q]<<endl;
}
return 0;
}
参考:
原文链接:https://blog.csdn.net/qq_51800570/article/details/123951651