1143.最长公共子序列
视频讲解:动态规划子序列问题经典题目 | LeetCode:1143.最长公共子序列_哔哩哔哩_bilibili
dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j]
确定递推公式
主要就是两大情况: text1[i - 1] 与 text2[j - 1]相同,text1[i - 1] 与 text2[j - 1]不相同
如果text1[i - 1] 与 text2[j - 1]相同,那么找到了一个公共元素,所以dp[i][j] = dp[i - 1][j - 1] + 1;
如果text1[i - 1] 与 text2[j - 1]不相同,那就看看text1[0, i - 2]与text2[0, j - 1]的最长公共子序列 和 text1[0, i - 1]与text2[0, j - 2]的最长公共子序列,取最大的。
即:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
class Solution {
public int longestCommonSubsequence(String text1, String text2) {
int[][] dp = new int[text1.length() + 1][text2.length() + 1];
int res = 0;
for(int i = 1;i <= text1.length();i++) {
for(int j = 1;j <= text2.length();j++) {
if(text1.charAt(i - 1) == text2.charAt(j - 1)) {
dp[i][j] = dp[i - 1][j - 1] + 1;
}else {
dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
}
res = Math.max(res, dp[i][j]);
}
}
return res;
}
}
1035.不相交的线
视频讲解:动态规划之子序列问题,换汤不换药 | LeetCode:1035.不相交的线_哔哩哔哩_bilibili
和最长公共子序列一样,子序列最长时才能连出最多的不相交线
class Solution {
public int maxUncrossedLines(int[] nums1, int[] nums2) {
int[][] dp = new int[nums1.length + 1][nums2.length + 1];
int res = 0;
for(int i = 1;i <= nums1.length;i++){
for(int j = 1;j <= nums2.length;j++){
if(nums1[i - 1] == nums2[j - 1]){
dp[i][j] = dp[i - 1][j - 1] + 1;
}else{
dp[i][j] = Math.max(dp[i - 1][j],dp[i][j - 1]);
}
res = Math.max(res,dp[i][j]);
}
}
return res;
}
}
53. 最大子序和
视频讲解:看起来复杂,其实是简单动态规划 | LeetCode:53.最大子序和_哔哩哔哩_bilibili
class Solution {
public int maxSubArray(int[] nums) {
int[] dp = new int[nums.length];
dp[0] = nums[0];
int result = nums[0];
for(int i = 1; i < nums.length;i++){
dp[i] = Math.max(nums[i],dp[i - 1] + nums[i]);
result = Math.max(result,dp[i]);
}
return result;
}
}
392.判断子序列
如果删元素一定是字符串t,而 1143.最长公共子序列 是两个字符串都可以删元素。
如果最大子序列的长度和s一样,说明s是子序列。
class Solution {
public boolean isSubsequence(String s, String t) {
if(s.length() == 0)return true;
int[][] dp = new int[s.length() + 1][t.length() + 1];
for(int i = 1;i <= s.length();i++){
for(int j = 1;j <= t.length();j++){
if(s.charAt(i - 1) == t.charAt(j - 1))dp[i][j] = dp[i - 1][j - 1] + 1;
else {
dp[i][j] = dp[i][j - 1];//s不用删
//dp[i][j] = Math.max(dp[i - 1][j],dp[i][j - 1]);
}
if(dp[i][j] == s.length())return true;
}
}
return false;
}
}