文献阅读15期:Deep Learning on Graphs: A Survey - 4

[ 文献阅读·综述 ] Deep Learning on Graphs: A Survey [1]

推荐理由:图神经网络的survey paper,在很多的领域展现出了独特的作用力,分别通过GRAPH RNN(图循环网络)、GCN(图卷积)、GRAPH AUTOENCODERS(图自编码器)、GRAPH REINFORCEMENT LEARNING(图强化学习模型)、GRAPH ADVERSARIAL METHODS(图对抗模型)等五个类型的模型进行阐述,可以让大家对图神经网络有一个整体的认识。

4.3 提高与探讨

  • 这节主要讨论其他的一些可以被应用到图深度学习上的方法。

4.3.1.注意力机制

  • 在之前的方法中,大部分图图计算过程中,近邻节点的影响非常大,但这些节点影响的方式是实现制定好的,并非训练得来的。Graph attention network (GAT)引入了一种调整卷及操作的机制:
    h i l + 1 = ρ ( ∑ j ∈ N ^ ( i ) α i j l h j l Θ l ) (32) \mathbf{h}_{i}^{l+1}=\rho\left(\sum_{j \in \hat{\mathcal{N}}(i)} \alpha_{i j}^{l} \mathbf{h}_{j}^{l} \Theta^{l}\right)\tag{32} hil+1=ρjN^(i)αijlhjlΘl(32)
    其中, α i j l \alpha_{i j}^{l} αijl便是 l t h l^{t h} lth层中指节点 v i v_{i} vi对节点 v j v_{j} vj的注意程度:
    α i j l = exp ⁡ (  LeakyReLU  ( F ( h i l Θ l , h j l Θ l ) ) ) ∑ k ∈ N ^ ( i ) exp ⁡ (  LeakyReLU  ( F ( h i l Θ l , h k l Θ l ) ) ) (33) \alpha_{i j}^{l}=\frac{\exp \left(\text { LeakyReLU }\left(\mathcal{F}\left(\mathbf{h}_{i}^{l} \Theta^{l}, \mathbf{h}_{j}^{l} \Theta^{l}\right)\right)\right)}{\sum_{k \in \hat{\mathcal{N}}(i)} \exp \left(\text { LeakyReLU }\left(\mathcal{F}\left(\mathbf{h}_{i}^{l} \Theta^{l}, \mathbf{h}_{k}^{l} \Theta^{l}\right)\right)\right)}\tag{33} αijl=kN^(i)exp( LeakyReLU (F(hilΘl,hklΘl)))exp( LeakyReLU (F(hilΘl,hjlΘl)))
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值