题面
传送门
题目大意:
给定一棵树,每个点都有权值,边的长度均为1,有两种操作
操作1:将节点u的值增加x,并且对于u的子树中的任意一个点v,将它的值增加x-dist(u,v)*k, dist(u,v)表示u,v之间的距离
操作2:查询节点u的值
分析
这类题目需要用到一个重要的思想:将树上操作转化为区间操作
通过DFS序我们可以实现这一点.
对于每个节点x,我们记录它在前序遍历中的位置l[x],再一次回到x时的序号r[x],则x及其子树的区间为前序遍历中的[l[x],r[x]]
如:
这棵树的前序遍历为0 1 4 5 2 6 3 7 8 9 10
后序遍历为4 5 1 6 2 7 8 9 10 3 0
对于点3来说,它在前序遍历中的序号为7,遍历完7,8,9后回到3的序号为10,则区间为[7,10]
将树上操作转化为区间之后,我们处理两种操作
显然是用线段树的区间修改和单点查询实现
每次修改时,对于u的后代v,我们发现它增加的值
=x+k(d[v]−d[u])=x+k×d[u]−k×d[v]
=
x
+
k
(
d
[
v
]
−
d
[
u
]
)
=
x
+
k
×
d
[
u
]
−
k
×
d
[
v
]
(d[x]表示x的深度)
其中,对于u的每个后代v,
x+k×d[u]
x
+
k
×
d
[
u
]
都是一样的,可以批量修改,而
k×d[v]
k
×
d
[
v
]
则由每个节点决定
因此,我们用两棵线段树维护
一棵维护
x+k×d[u]
x
+
k
×
d
[
u
]
,一棵维护
k
k
修改时,我们把和
k
k
分别累加到区间[l[u],r[u]]中每一个点
查询时,我们可以求出每个节点的的总和a,以及
k
k
的总和b
答案就是
时间复杂度 O(n+qlog2n) O ( n + q l o g 2 n )
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#define maxn 300005
#define mod 1000000007ll
using namespace std;
int n,q;
struct edge{
int from;
int to;
int next;
}E[maxn<<1];
int size;
int head[maxn];
void add_edge(int u,int v){
size++;
E[size].from=u;
E[size].to=v;
E[size].next=head[u];
head[u]=size;
}
struct segment_tree{
struct node{
int l;
int r;
long long mark;
long long v;
}tree[maxn<<2];
segment_tree(){
memset(tree,0,sizeof(tree));
}
void build(int l,int r,int pos){
tree[pos].l=l;
tree[pos].r=r;
tree[pos].mark=0;
tree[pos].v=0;
if(l==r) return;
int mid=(l+r)>>1;
build(l,mid,pos<<1);
build(mid+1,r,pos<<1|1);
}
void push_down(int pos){
if(tree[pos].mark){
tree[pos<<1].mark=(tree[pos].mark+tree[pos<<1].mark)%mod;
tree[pos<<1|1].mark=(tree[pos].mark+tree[pos<<1|1].mark)%mod;
tree[pos<<1].v=(tree[pos].mark+tree[pos<<1].v)%mod;
tree[pos<<1|1].v=(tree[pos].mark+tree[pos<<1|1].v)%mod;
tree[pos].mark=0;
}
}
void update(int L,int R,long long v,int pos){
if(L<=tree[pos].l&&R>=tree[pos].r){
tree[pos].v=(tree[pos].v+v)%mod;
tree[pos].mark=(tree[pos].mark+v)%mod;
return ;
}
push_down(pos);
int mid=(tree[pos].l+tree[pos].r)>>1;
if(L<=mid) update(L,R,v,pos<<1);
if(R>mid) update(L,R,v,pos<<1|1);
return;
}
long long query(int L,int R,int pos){
if(L<=tree[pos].l&&R>=tree[pos].r){
return tree[pos].v;
}
push_down(pos);
int mid=(tree[pos].l+tree[pos].r)>>1;
long long ans=0;
if(L<=mid) ans=(ans+query(L,R,pos<<1))%mod;
if(R>mid) ans=(ans+query(L,R,pos<<1|1))%mod;
return ans;
}
};
segment_tree T1,T2;
int l[maxn],r[maxn];
int deep[maxn];
int cnt=0;
void dfs(int x,int fa){
l[x]=++cnt;
deep[x]=deep[fa]+1;
for(int i=head[x];i;i=E[i].next){
int y=E[i].to;
if(y!=fa){
dfs(y,x);
}
}
r[x]=cnt;
}
int main(){
int p,cmd;
int v,x,k;
scanf("%d",&n);
int root;
for(int i=2;i<=n;i++){
scanf("%d",&p);
add_edge(i,p);
add_edge(p,i);
}
dfs(1,0);
T1.build(1,n,1);
T2.build(1,n,1);
scanf("%d",&q);
for(int i=1;i<=q;i++){
scanf("%d",&cmd);
if(cmd==1){
scanf("%d %d %d",&v,&x,&k);
T1.update(l[v],r[v],(long long)x+(long long)deep[v]*k%mod,1);
T2.update(l[v],r[v],(long long)k,1);
}else{
scanf("%d",&v);
long long ans=(T1.query(l[v],l[v],1)-(long long)deep[v]*T2.query(l[v],l[v],1)+mod)%mod;
if(ans<0) ans+=mod;
printf("%I64d\n",ans%mod);
}
}
}