加权自动机与加权逻辑:理论与应用
1. 可识别阶梯函数的性质
可识别阶梯函数在加权自动机和加权逻辑的研究中具有重要地位。其具有以下关键性质:
- 封闭性 :所有关于字母表 Σ 和半环 S 的可识别阶梯函数类在求和、标量积和哈达玛积运算下是封闭的。
- 同态保持性 :设 h : Σ∗ → Γ ∗ 是一个同态,那么 h−1 : S⟨⟨Γ ∗⟩⟩ → S⟨⟨Σ∗⟩⟩ 能保持可识别阶梯函数。
下面通过一个简单的表格来总结这些性质:
| 性质 | 描述 |
| ---- | ---- |
| 封闭性 | 可识别阶梯函数类在求和、标量积和哈达玛积下封闭 |
| 同态保持性 | h−1 能保持可识别阶梯函数 |
2. 加权逻辑的引入
2.1 加权MSO逻辑的语法
加权MSO逻辑的公式语法由以下规则定义:
ϕ ::= s | Pa(x) | ¬Pa(x) | x ≤ y | ¬(x ≤ y) | x ∈ X | ¬(x ∈ X)
| ϕ ∨ ϕ | ϕ ∧ ϕ | ∃x.ϕ | ∃X.ϕ | ∀x.ϕ | ∀X.ϕ
其中 s ∈ S 且 a ∈ Σ,所有这样的加权MSO公式 ϕ 的集合记为 MSO(S, Σ)。
为了便于理解,这里给出一个 mermaid 格式的流程图,展示公式的构造过程:
graph LR
classDef startend fill:#F5EBFF,str
超级会员免费看
订阅专栏 解锁全文
8381

被折叠的 条评论
为什么被折叠?



